doi: 10.3934/mcrf.2020038

Improved error estimates for optimal control of the Stokes problem with pointwise tracking in three dimensions

Department of Mathematics, Technical University of Munich, Boltzmannstrasse 3, 85748 Garching, Germany

* Corresponding author: Niklas Behringer

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project number 188264188/GRK1754.

Received  March 2020 Revised  July 2020 Published  August 2020

This work is motivated by recent interest in the topic of pointwise tracking type optimal control problems for the Stokes problem. Pointwise tracking consists of point evaluations in the objective functional which lead to Dirac measures appearing as source terms of the adjoint problem. Considering bounds for the control allows for improved regularity results for the exact solution and improved approximation error estimates of its numerical counterpart. We show a sub-optimal convergence result in three dimensions that nonetheless improves the results known from the literature. Finally, we offer supporting numerical experiments and insights towards optimal approximation error estimates.

Citation: Niklas Behringer. Improved error estimates for optimal control of the Stokes problem with pointwise tracking in three dimensions. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020038
References:
[1]

H. W. Alt, Linear Functional Analysis, An application-oriented introduction, Translated from the German edition by Robert Nürnberg, Universitext, Springer-Verlag London, Ltd., London, 2016. doi: 10.1007/978-1-4471-7280-2.  Google Scholar

[2]

H. AntilE. Otárola and A. J. Salgado, Some applications of weighted norm inequalities to the error analysis of PDE-constrained optimization problems, IMA J. Numer. Anal., 38 (2018), 852-883.  doi: 10.1093/imanum/drx018.  Google Scholar

[3]

N. Behringer, D. Leykekhman and B. Vexler., Global and local pointwise error estimates for finite element approximations to the stokes problem on convex polyhedra, SIAM J. Numer. Anal., 58(3): 1531–1555, 2020. doi: 10.1137/19M1274456.  Google Scholar

[4]

N. BehringerD. Meidner and B. Vexler, Finite element error estimates for optimal control problems with pointwise tracking, Pure Appl. Funct. Anal., 4 (2019), 177-204.   Google Scholar

[5]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15 of Texts in Applied Mathematics, 3rd edition, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[6]

C. BrettA. Dedner and C. Elliott, Optimal control of elliptic PDEs at points, IMA J. Numer. Anal., 36 (2016), 1015-1050.  doi: 10.1093/imanum/drv040.  Google Scholar

[7]

R. M. Brown and Z. Shen, Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J., 44 (1995), 1183-1206.  doi: 10.1512/iumj.1995.44.2025.  Google Scholar

[8]

E. Casas, Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints, A tribute to J. L. Lions, ESAIM Control Optim. Calc. Var., 8 (2002), 345-374.  doi: 10.1051/cocv:2002049.  Google Scholar

[9]

E. CasasM. Mateos and B. Vexler, New regularity results and improved error estimates for optimal control problems with state constraints, ESAIM Control Optim. Calc. Var., 20 (2014), 803-822.  doi: 10.1051/cocv/2013084.  Google Scholar

[10]

L. ChangW. Gong and N. Yan, Numerical analysis for the approximation of optimal control problems with pointwise observations, Math. Methods Appl. Sci., 38 (2015), 4502-4520.  doi: 10.1002/mma.2861.  Google Scholar

[11]

M. Dauge, Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations, SIAM J. Math. Anal., 20 (1989), 74-97.  doi: 10.1137/0520006.  Google Scholar

[12]

J. C. de los ReyesC. Meyer and B. Vexler, Finite element error analysis for state-constrained optimal control of the Stokes equations, Control Cybernet., 37 (2008), 251-284.   Google Scholar

[13]

R. G. DuránE. Otárola and A. J. Salgado, Stability of the Stokes projection on weighted spaces and applications, Math. Comp., 89 (2020), 1581-1603.  doi: 10.1090/mcom/3509.  Google Scholar

[14]

F. Fuica, E. Otárola and D. Quero., Error estimates for optimal control problems involving the stokes system and dirac measures., Applied Mathematics & Optimization, Jun 2020. Google Scholar

[15]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-State Problems. 2nd edition, Springer Monographs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.  Google Scholar

[16]

, The finite element toolkit GASCOIGNE, http://www.gascoigne.de. Google Scholar

[17]

V. GiraultR. H. Nochetto and L. R. Scott, Max-norm estimates for Stokes and Navier-Stokes approximations in convex polyhedra, Numer. Math., 131 (2015), 771-822.  doi: 10.1007/s00211-015-0707-8.  Google Scholar

[18]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, vol. 5 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[19]

M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case, Comput. Optim. Appl., 30 (2005), 45-61.  doi: 10.1007/s10589-005-4559-5.  Google Scholar

[20]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, vol. 31 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000, Reprint of the 1980 original. doi: 10.1137/1.9780898719451.  Google Scholar

[21]

G. Leoni, A First Course in Sobolev Spaces, vol. 105 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2009. doi: 10.1090/gsm/105.  Google Scholar

[22]

J.-L. Lions, Contrôle Optimal de Systèmes Gouvernés Par des Équations Aux Dérivées Partielles, Avant propos de P. Lelong, Dunod, Paris; Gauthier-Villars, Paris, 1968.  Google Scholar

[23]

V. Maz'ya and J. Rossmann, Elliptic Equations in Polyhedral Domains, vol. 162 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/surv/162.  Google Scholar

[24]

C. Meyer, Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints, Control Cybernet., 37 (2008), 51-83.   Google Scholar

[25]

RoDoBo. A C++ library for optimization with stationary and nonstationary PDEs with interface to GASCOIGNE [16], http://www.rodobo.org. Google Scholar

[26]

F. Tröltzsch, Optimal Control of Partial Differential Equations, Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels, vol. 112 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/112.  Google Scholar

[27]

W. P. Ziemer, Weakly Differentiable Functions, Sobolev spaces and functions of bounded variation, vol. 120 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

show all references

References:
[1]

H. W. Alt, Linear Functional Analysis, An application-oriented introduction, Translated from the German edition by Robert Nürnberg, Universitext, Springer-Verlag London, Ltd., London, 2016. doi: 10.1007/978-1-4471-7280-2.  Google Scholar

[2]

H. AntilE. Otárola and A. J. Salgado, Some applications of weighted norm inequalities to the error analysis of PDE-constrained optimization problems, IMA J. Numer. Anal., 38 (2018), 852-883.  doi: 10.1093/imanum/drx018.  Google Scholar

[3]

N. Behringer, D. Leykekhman and B. Vexler., Global and local pointwise error estimates for finite element approximations to the stokes problem on convex polyhedra, SIAM J. Numer. Anal., 58(3): 1531–1555, 2020. doi: 10.1137/19M1274456.  Google Scholar

[4]

N. BehringerD. Meidner and B. Vexler, Finite element error estimates for optimal control problems with pointwise tracking, Pure Appl. Funct. Anal., 4 (2019), 177-204.   Google Scholar

[5]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15 of Texts in Applied Mathematics, 3rd edition, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[6]

C. BrettA. Dedner and C. Elliott, Optimal control of elliptic PDEs at points, IMA J. Numer. Anal., 36 (2016), 1015-1050.  doi: 10.1093/imanum/drv040.  Google Scholar

[7]

R. M. Brown and Z. Shen, Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J., 44 (1995), 1183-1206.  doi: 10.1512/iumj.1995.44.2025.  Google Scholar

[8]

E. Casas, Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints, A tribute to J. L. Lions, ESAIM Control Optim. Calc. Var., 8 (2002), 345-374.  doi: 10.1051/cocv:2002049.  Google Scholar

[9]

E. CasasM. Mateos and B. Vexler, New regularity results and improved error estimates for optimal control problems with state constraints, ESAIM Control Optim. Calc. Var., 20 (2014), 803-822.  doi: 10.1051/cocv/2013084.  Google Scholar

[10]

L. ChangW. Gong and N. Yan, Numerical analysis for the approximation of optimal control problems with pointwise observations, Math. Methods Appl. Sci., 38 (2015), 4502-4520.  doi: 10.1002/mma.2861.  Google Scholar

[11]

M. Dauge, Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations, SIAM J. Math. Anal., 20 (1989), 74-97.  doi: 10.1137/0520006.  Google Scholar

[12]

J. C. de los ReyesC. Meyer and B. Vexler, Finite element error analysis for state-constrained optimal control of the Stokes equations, Control Cybernet., 37 (2008), 251-284.   Google Scholar

[13]

R. G. DuránE. Otárola and A. J. Salgado, Stability of the Stokes projection on weighted spaces and applications, Math. Comp., 89 (2020), 1581-1603.  doi: 10.1090/mcom/3509.  Google Scholar

[14]

F. Fuica, E. Otárola and D. Quero., Error estimates for optimal control problems involving the stokes system and dirac measures., Applied Mathematics & Optimization, Jun 2020. Google Scholar

[15]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-State Problems. 2nd edition, Springer Monographs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.  Google Scholar

[16]

, The finite element toolkit GASCOIGNE, http://www.gascoigne.de. Google Scholar

[17]

V. GiraultR. H. Nochetto and L. R. Scott, Max-norm estimates for Stokes and Navier-Stokes approximations in convex polyhedra, Numer. Math., 131 (2015), 771-822.  doi: 10.1007/s00211-015-0707-8.  Google Scholar

[18]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, vol. 5 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[19]

M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case, Comput. Optim. Appl., 30 (2005), 45-61.  doi: 10.1007/s10589-005-4559-5.  Google Scholar

[20]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, vol. 31 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000, Reprint of the 1980 original. doi: 10.1137/1.9780898719451.  Google Scholar

[21]

G. Leoni, A First Course in Sobolev Spaces, vol. 105 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2009. doi: 10.1090/gsm/105.  Google Scholar

[22]

J.-L. Lions, Contrôle Optimal de Systèmes Gouvernés Par des Équations Aux Dérivées Partielles, Avant propos de P. Lelong, Dunod, Paris; Gauthier-Villars, Paris, 1968.  Google Scholar

[23]

V. Maz'ya and J. Rossmann, Elliptic Equations in Polyhedral Domains, vol. 162 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/surv/162.  Google Scholar

[24]

C. Meyer, Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints, Control Cybernet., 37 (2008), 51-83.   Google Scholar

[25]

RoDoBo. A C++ library for optimization with stationary and nonstationary PDEs with interface to GASCOIGNE [16], http://www.rodobo.org. Google Scholar

[26]

F. Tröltzsch, Optimal Control of Partial Differential Equations, Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels, vol. 112 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/112.  Google Scholar

[27]

W. P. Ziemer, Weakly Differentiable Functions, Sobolev spaces and functions of bounded variation, vol. 120 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

Figure 1.  Threshold visualization of the first component of a solution $ \vec{q}_h $ to Problem (16)
Figure 2.  Error $ ||\bar q_{n}-\bar q_h||_{L^2(\Omega)} $ for cellwise constant control discretization and different choices for the bounds $ \vec a $ and $ \vec b $. $ \bar q_{n} $ denotes the approximate solution on a finer mesh
[1]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[4]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[5]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[6]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[7]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[8]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[9]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[10]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[11]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[12]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[13]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[14]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[15]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[16]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[17]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[18]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[19]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[20]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (44)
  • HTML views (189)
  • Cited by (0)

Other articles
by authors

[Back to Top]