-
Previous Article
General stability of abstract thermoelastic system with infinite memory and delay
- MCRF Home
- This Issue
-
Next Article
Improved error estimates for optimal control of the Stokes problem with pointwise tracking in three dimensions
On switching properties of time optimal controls for linear ODEs
1. | School of Science, Tianjin University of Commerce, Tianjin, 300134, China |
2. | Center for Applied Mathematics, Tianjin University, Tianjin, 300072, China |
3. | School of Mathematics, Tianjin University, Tianjin, 300354, China |
In this paper, we present some properties of time optimal controls for linear ODEs with the ball-type control constraint. More precisely, given an optimal control, we build up an upper bound for the number of its switching points; show that it jumps from one direction to the reverse direction at each switching point; give its dynamic behaviour between two consecutive switching points; and study its switching directions.
References:
[1] |
A. A. Agrachev and C. Biolo,
Switching in time-optimal problem with control in a ball, SIAM J. Control Optim., 56 (2018), 183-120.
doi: 10.1137/16M110304X. |
[2] |
A. A. Agrachev and C. Biolo,
Switching in time-optimal problem: The 3D Case with 2D control, J. Dyn. Control Syst., 23 (2017), 577-595.
doi: 10.1007/s10883-016-9342-7. |
[3] |
A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-662-06404-7. |
[4] |
R. Bellman, I. Glicksberg and O. Gross,
On the "bang-bang" control problem, Quart. Appl. Math., 14 (1956), 11-18.
doi: 10.1090/qam/78516. |
[5] |
C. Biolo, Switching in Time-Optimal Problem, Ph.D thesis, Scuola Internazionale Superiore di Studi Avanzati - Trieste, 2017. Google Scholar |
[6] |
C. K. Chui and G. Chen, Linear Systems and Optimal Control, Springer Series in Information Sciences, 18, Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-61312-8. |
[7] |
R. Conti, Teoia del Controllo e del Controllo Ottimo, UTET, Torino, Italy, 1974. Google Scholar |
[8] |
L. C. Evans, An Introduction to Mathematical Optimal Control Theory, Lecture Notes, Univerisity of California, Berkeley, 2005. Google Scholar |
[9] |
H. O. Fattorini, Infinite Dimensional Linear Control Systems. The Time Optimal and Norm Optimal Control Problems, North-Holland Mathematics Studies, 201, Elsevier Science B.V., Amsterdam, 2005. |
[10] |
H. O. Fattorini,
Time and norm optimal controls: A survey of recent results and open problems, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 2203-2218.
doi: 10.1016/S0252-9602(11)60394-9. |
[11] |
J. P. LaSalle,
Time optimal control systems, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 573-577.
doi: 10.1073/pnas.45.4.573. |
[12] |
P. Lin and G. Wang,
Blowup time optimal control for ordinary differential equations, SIAM J. Control Optim., 49 (2011), 73-105.
doi: 10.1137/090764232. |
[13] |
L. Poggiolini,
Structural stability of bang-bang trajectories with a double switching time in the minimum time problem, SIAM J. Control Optim., 55 (2017), 3779-3798.
doi: 10.1137/16M1083761. |
[14] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience Publishers John Wiley & Sons, Inc., New York-London 1962. |
[15] |
S. Qin and G. Wang,
Controllability of impulse controlled systems of heat equations coupled by constant matrices, J. Differential Equations, 263 (2017), 6456-6493.
doi: 10.1016/j.jde.2017.07.018. |
[16] |
E. D. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998.
doi: 10.1007/978-1-4612-0577-7. |
[17] |
H. J. Sussmann,
A bang-bang theorem with bounds on the number of switchings, SIAM J. Control Optim., 17 (1979), 629-651.
doi: 10.1137/0317045. |
[18] |
G. Wang, L. Wang, Y. Xu and Y. Zhang, Time Optimal Control of Evolution Equations, Progress in Nonlinear Differential Equations and Their Applications, Subseries in Control, 92, Birkhäuser/Springer, Cham, 2018.
doi: 10.1007/978-3-319-95363-2. |
[19] |
G. Wang and Y. Zhang,
Decompositions and bang-bang properties, Math. Control Relat. Fields, 7 (2017), 73-170.
doi: 10.3934/mcrf.2017005. |
show all references
References:
[1] |
A. A. Agrachev and C. Biolo,
Switching in time-optimal problem with control in a ball, SIAM J. Control Optim., 56 (2018), 183-120.
doi: 10.1137/16M110304X. |
[2] |
A. A. Agrachev and C. Biolo,
Switching in time-optimal problem: The 3D Case with 2D control, J. Dyn. Control Syst., 23 (2017), 577-595.
doi: 10.1007/s10883-016-9342-7. |
[3] |
A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-662-06404-7. |
[4] |
R. Bellman, I. Glicksberg and O. Gross,
On the "bang-bang" control problem, Quart. Appl. Math., 14 (1956), 11-18.
doi: 10.1090/qam/78516. |
[5] |
C. Biolo, Switching in Time-Optimal Problem, Ph.D thesis, Scuola Internazionale Superiore di Studi Avanzati - Trieste, 2017. Google Scholar |
[6] |
C. K. Chui and G. Chen, Linear Systems and Optimal Control, Springer Series in Information Sciences, 18, Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-61312-8. |
[7] |
R. Conti, Teoia del Controllo e del Controllo Ottimo, UTET, Torino, Italy, 1974. Google Scholar |
[8] |
L. C. Evans, An Introduction to Mathematical Optimal Control Theory, Lecture Notes, Univerisity of California, Berkeley, 2005. Google Scholar |
[9] |
H. O. Fattorini, Infinite Dimensional Linear Control Systems. The Time Optimal and Norm Optimal Control Problems, North-Holland Mathematics Studies, 201, Elsevier Science B.V., Amsterdam, 2005. |
[10] |
H. O. Fattorini,
Time and norm optimal controls: A survey of recent results and open problems, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 2203-2218.
doi: 10.1016/S0252-9602(11)60394-9. |
[11] |
J. P. LaSalle,
Time optimal control systems, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 573-577.
doi: 10.1073/pnas.45.4.573. |
[12] |
P. Lin and G. Wang,
Blowup time optimal control for ordinary differential equations, SIAM J. Control Optim., 49 (2011), 73-105.
doi: 10.1137/090764232. |
[13] |
L. Poggiolini,
Structural stability of bang-bang trajectories with a double switching time in the minimum time problem, SIAM J. Control Optim., 55 (2017), 3779-3798.
doi: 10.1137/16M1083761. |
[14] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience Publishers John Wiley & Sons, Inc., New York-London 1962. |
[15] |
S. Qin and G. Wang,
Controllability of impulse controlled systems of heat equations coupled by constant matrices, J. Differential Equations, 263 (2017), 6456-6493.
doi: 10.1016/j.jde.2017.07.018. |
[16] |
E. D. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998.
doi: 10.1007/978-1-4612-0577-7. |
[17] |
H. J. Sussmann,
A bang-bang theorem with bounds on the number of switchings, SIAM J. Control Optim., 17 (1979), 629-651.
doi: 10.1137/0317045. |
[18] |
G. Wang, L. Wang, Y. Xu and Y. Zhang, Time Optimal Control of Evolution Equations, Progress in Nonlinear Differential Equations and Their Applications, Subseries in Control, 92, Birkhäuser/Springer, Cham, 2018.
doi: 10.1007/978-3-319-95363-2. |
[19] |
G. Wang and Y. Zhang,
Decompositions and bang-bang properties, Math. Control Relat. Fields, 7 (2017), 73-170.
doi: 10.3934/mcrf.2017005. |
[1] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[2] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[3] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[4] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[5] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[6] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[7] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[8] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[9] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[10] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[11] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[12] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[13] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[14] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[15] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[16] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[17] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
[18] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[19] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[20] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]