• Previous Article
    General stability of abstract thermoelastic system with infinite memory and delay
  • MCRF Home
  • This Issue
  • Next Article
    Improved error estimates for optimal control of the Stokes problem with pointwise tracking in three dimensions
June  2021, 11(2): 329-351. doi: 10.3934/mcrf.2020039

On switching properties of time optimal controls for linear ODEs

1. 

School of Science, Tianjin University of Commerce, Tianjin, 300134, China

2. 

Center for Applied Mathematics, Tianjin University, Tianjin, 300072, China

3. 

School of Mathematics, Tianjin University, Tianjin, 300354, China

* Corresponding author: Huaiqiang Yu

Received  November 2019 Revised  June 2020 Published  October 2020

Fund Project: This work was partially supported by the NNSF of China under grants 11601377, 11901432, 11971022

In this paper, we present some properties of time optimal controls for linear ODEs with the ball-type control constraint. More precisely, given an optimal control, we build up an upper bound for the number of its switching points; show that it jumps from one direction to the reverse direction at each switching point; give its dynamic behaviour between two consecutive switching points; and study its switching directions.

Citation: Shulin Qin, Gengsheng Wang, Huaiqiang Yu. On switching properties of time optimal controls for linear ODEs. Mathematical Control & Related Fields, 2021, 11 (2) : 329-351. doi: 10.3934/mcrf.2020039
References:
[1]

A. A. Agrachev and C. Biolo, Switching in time-optimal problem with control in a ball, SIAM J. Control Optim., 56 (2018), 183-120.  doi: 10.1137/16M110304X.  Google Scholar

[2]

A. A. Agrachev and C. Biolo, Switching in time-optimal problem: The 3D Case with 2D control, J. Dyn. Control Syst., 23 (2017), 577-595.  doi: 10.1007/s10883-016-9342-7.  Google Scholar

[3]

A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-06404-7.  Google Scholar

[4]

R. BellmanI. Glicksberg and O. Gross, On the "bang-bang" control problem, Quart. Appl. Math., 14 (1956), 11-18.  doi: 10.1090/qam/78516.  Google Scholar

[5]

C. Biolo, Switching in Time-Optimal Problem, Ph.D thesis, Scuola Internazionale Superiore di Studi Avanzati - Trieste, 2017. Google Scholar

[6]

C. K. Chui and G. Chen, Linear Systems and Optimal Control, Springer Series in Information Sciences, 18, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-61312-8.  Google Scholar

[7]

R. Conti, Teoia del Controllo e del Controllo Ottimo, UTET, Torino, Italy, 1974. Google Scholar

[8]

L. C. Evans, An Introduction to Mathematical Optimal Control Theory, Lecture Notes, Univerisity of California, Berkeley, 2005. Google Scholar

[9]

H. O. Fattorini, Infinite Dimensional Linear Control Systems. The Time Optimal and Norm Optimal Control Problems, North-Holland Mathematics Studies, 201, Elsevier Science B.V., Amsterdam, 2005.  Google Scholar

[10]

H. O. Fattorini, Time and norm optimal controls: A survey of recent results and open problems, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 2203-2218.  doi: 10.1016/S0252-9602(11)60394-9.  Google Scholar

[11]

J. P. LaSalle, Time optimal control systems, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 573-577.  doi: 10.1073/pnas.45.4.573.  Google Scholar

[12]

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations, SIAM J. Control Optim., 49 (2011), 73-105.  doi: 10.1137/090764232.  Google Scholar

[13]

L. Poggiolini, Structural stability of bang-bang trajectories with a double switching time in the minimum time problem, SIAM J. Control Optim., 55 (2017), 3779-3798.  doi: 10.1137/16M1083761.  Google Scholar

[14]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience Publishers John Wiley & Sons, Inc., New York-London 1962.  Google Scholar

[15]

S. Qin and G. Wang, Controllability of impulse controlled systems of heat equations coupled by constant matrices, J. Differential Equations, 263 (2017), 6456-6493.  doi: 10.1016/j.jde.2017.07.018.  Google Scholar

[16]

E. D. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[17]

H. J. Sussmann, A bang-bang theorem with bounds on the number of switchings, SIAM J. Control Optim., 17 (1979), 629-651.  doi: 10.1137/0317045.  Google Scholar

[18]

G. Wang, L. Wang, Y. Xu and Y. Zhang, Time Optimal Control of Evolution Equations, Progress in Nonlinear Differential Equations and Their Applications, Subseries in Control, 92, Birkhäuser/Springer, Cham, 2018. doi: 10.1007/978-3-319-95363-2.  Google Scholar

[19]

G. Wang and Y. Zhang, Decompositions and bang-bang properties, Math. Control Relat. Fields, 7 (2017), 73-170.  doi: 10.3934/mcrf.2017005.  Google Scholar

show all references

References:
[1]

A. A. Agrachev and C. Biolo, Switching in time-optimal problem with control in a ball, SIAM J. Control Optim., 56 (2018), 183-120.  doi: 10.1137/16M110304X.  Google Scholar

[2]

A. A. Agrachev and C. Biolo, Switching in time-optimal problem: The 3D Case with 2D control, J. Dyn. Control Syst., 23 (2017), 577-595.  doi: 10.1007/s10883-016-9342-7.  Google Scholar

[3]

A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-06404-7.  Google Scholar

[4]

R. BellmanI. Glicksberg and O. Gross, On the "bang-bang" control problem, Quart. Appl. Math., 14 (1956), 11-18.  doi: 10.1090/qam/78516.  Google Scholar

[5]

C. Biolo, Switching in Time-Optimal Problem, Ph.D thesis, Scuola Internazionale Superiore di Studi Avanzati - Trieste, 2017. Google Scholar

[6]

C. K. Chui and G. Chen, Linear Systems and Optimal Control, Springer Series in Information Sciences, 18, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-61312-8.  Google Scholar

[7]

R. Conti, Teoia del Controllo e del Controllo Ottimo, UTET, Torino, Italy, 1974. Google Scholar

[8]

L. C. Evans, An Introduction to Mathematical Optimal Control Theory, Lecture Notes, Univerisity of California, Berkeley, 2005. Google Scholar

[9]

H. O. Fattorini, Infinite Dimensional Linear Control Systems. The Time Optimal and Norm Optimal Control Problems, North-Holland Mathematics Studies, 201, Elsevier Science B.V., Amsterdam, 2005.  Google Scholar

[10]

H. O. Fattorini, Time and norm optimal controls: A survey of recent results and open problems, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 2203-2218.  doi: 10.1016/S0252-9602(11)60394-9.  Google Scholar

[11]

J. P. LaSalle, Time optimal control systems, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 573-577.  doi: 10.1073/pnas.45.4.573.  Google Scholar

[12]

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations, SIAM J. Control Optim., 49 (2011), 73-105.  doi: 10.1137/090764232.  Google Scholar

[13]

L. Poggiolini, Structural stability of bang-bang trajectories with a double switching time in the minimum time problem, SIAM J. Control Optim., 55 (2017), 3779-3798.  doi: 10.1137/16M1083761.  Google Scholar

[14]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience Publishers John Wiley & Sons, Inc., New York-London 1962.  Google Scholar

[15]

S. Qin and G. Wang, Controllability of impulse controlled systems of heat equations coupled by constant matrices, J. Differential Equations, 263 (2017), 6456-6493.  doi: 10.1016/j.jde.2017.07.018.  Google Scholar

[16]

E. D. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[17]

H. J. Sussmann, A bang-bang theorem with bounds on the number of switchings, SIAM J. Control Optim., 17 (1979), 629-651.  doi: 10.1137/0317045.  Google Scholar

[18]

G. Wang, L. Wang, Y. Xu and Y. Zhang, Time Optimal Control of Evolution Equations, Progress in Nonlinear Differential Equations and Their Applications, Subseries in Control, 92, Birkhäuser/Springer, Cham, 2018. doi: 10.1007/978-3-319-95363-2.  Google Scholar

[19]

G. Wang and Y. Zhang, Decompositions and bang-bang properties, Math. Control Relat. Fields, 7 (2017), 73-170.  doi: 10.3934/mcrf.2017005.  Google Scholar

[1]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[2]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[3]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[4]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[5]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[6]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[7]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[8]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[9]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[10]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[11]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[12]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[13]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[14]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[15]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[16]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[17]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[18]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[19]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[20]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (64)
  • HTML views (144)
  • Cited by (0)

Other articles
by authors

[Back to Top]