doi: 10.3934/mcrf.2020039

On switching properties of time optimal controls for linear ODEs

1. 

School of Science, Tianjin University of Commerce, Tianjin, 300134, China

2. 

Center for Applied Mathematics, Tianjin University, Tianjin, 300072, China

3. 

School of Mathematics, Tianjin University, Tianjin, 300354, China

* Corresponding author: Huaiqiang Yu

Received  November 2019 Revised  June 2020 Published  October 2020

Fund Project: This work was partially supported by the NNSF of China under grants 11601377, 11901432, 11971022

In this paper, we present some properties of time optimal controls for linear ODEs with the ball-type control constraint. More precisely, given an optimal control, we build up an upper bound for the number of its switching points; show that it jumps from one direction to the reverse direction at each switching point; give its dynamic behaviour between two consecutive switching points; and study its switching directions.

Citation: Shulin Qin, Gengsheng Wang, Huaiqiang Yu. On switching properties of time optimal controls for linear ODEs. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020039
References:
[1]

A. A. Agrachev and C. Biolo, Switching in time-optimal problem with control in a ball, SIAM J. Control Optim., 56 (2018), 183-120.  doi: 10.1137/16M110304X.  Google Scholar

[2]

A. A. Agrachev and C. Biolo, Switching in time-optimal problem: The 3D Case with 2D control, J. Dyn. Control Syst., 23 (2017), 577-595.  doi: 10.1007/s10883-016-9342-7.  Google Scholar

[3]

A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-06404-7.  Google Scholar

[4]

R. BellmanI. Glicksberg and O. Gross, On the "bang-bang" control problem, Quart. Appl. Math., 14 (1956), 11-18.  doi: 10.1090/qam/78516.  Google Scholar

[5]

C. Biolo, Switching in Time-Optimal Problem, Ph.D thesis, Scuola Internazionale Superiore di Studi Avanzati - Trieste, 2017. Google Scholar

[6]

C. K. Chui and G. Chen, Linear Systems and Optimal Control, Springer Series in Information Sciences, 18, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-61312-8.  Google Scholar

[7]

R. Conti, Teoia del Controllo e del Controllo Ottimo, UTET, Torino, Italy, 1974. Google Scholar

[8]

L. C. Evans, An Introduction to Mathematical Optimal Control Theory, Lecture Notes, Univerisity of California, Berkeley, 2005. Google Scholar

[9]

H. O. Fattorini, Infinite Dimensional Linear Control Systems. The Time Optimal and Norm Optimal Control Problems, North-Holland Mathematics Studies, 201, Elsevier Science B.V., Amsterdam, 2005.  Google Scholar

[10]

H. O. Fattorini, Time and norm optimal controls: A survey of recent results and open problems, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 2203-2218.  doi: 10.1016/S0252-9602(11)60394-9.  Google Scholar

[11]

J. P. LaSalle, Time optimal control systems, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 573-577.  doi: 10.1073/pnas.45.4.573.  Google Scholar

[12]

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations, SIAM J. Control Optim., 49 (2011), 73-105.  doi: 10.1137/090764232.  Google Scholar

[13]

L. Poggiolini, Structural stability of bang-bang trajectories with a double switching time in the minimum time problem, SIAM J. Control Optim., 55 (2017), 3779-3798.  doi: 10.1137/16M1083761.  Google Scholar

[14]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience Publishers John Wiley & Sons, Inc., New York-London 1962.  Google Scholar

[15]

S. Qin and G. Wang, Controllability of impulse controlled systems of heat equations coupled by constant matrices, J. Differential Equations, 263 (2017), 6456-6493.  doi: 10.1016/j.jde.2017.07.018.  Google Scholar

[16]

E. D. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[17]

H. J. Sussmann, A bang-bang theorem with bounds on the number of switchings, SIAM J. Control Optim., 17 (1979), 629-651.  doi: 10.1137/0317045.  Google Scholar

[18]

G. Wang, L. Wang, Y. Xu and Y. Zhang, Time Optimal Control of Evolution Equations, Progress in Nonlinear Differential Equations and Their Applications, Subseries in Control, 92, Birkhäuser/Springer, Cham, 2018. doi: 10.1007/978-3-319-95363-2.  Google Scholar

[19]

G. Wang and Y. Zhang, Decompositions and bang-bang properties, Math. Control Relat. Fields, 7 (2017), 73-170.  doi: 10.3934/mcrf.2017005.  Google Scholar

show all references

References:
[1]

A. A. Agrachev and C. Biolo, Switching in time-optimal problem with control in a ball, SIAM J. Control Optim., 56 (2018), 183-120.  doi: 10.1137/16M110304X.  Google Scholar

[2]

A. A. Agrachev and C. Biolo, Switching in time-optimal problem: The 3D Case with 2D control, J. Dyn. Control Syst., 23 (2017), 577-595.  doi: 10.1007/s10883-016-9342-7.  Google Scholar

[3]

A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-06404-7.  Google Scholar

[4]

R. BellmanI. Glicksberg and O. Gross, On the "bang-bang" control problem, Quart. Appl. Math., 14 (1956), 11-18.  doi: 10.1090/qam/78516.  Google Scholar

[5]

C. Biolo, Switching in Time-Optimal Problem, Ph.D thesis, Scuola Internazionale Superiore di Studi Avanzati - Trieste, 2017. Google Scholar

[6]

C. K. Chui and G. Chen, Linear Systems and Optimal Control, Springer Series in Information Sciences, 18, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-61312-8.  Google Scholar

[7]

R. Conti, Teoia del Controllo e del Controllo Ottimo, UTET, Torino, Italy, 1974. Google Scholar

[8]

L. C. Evans, An Introduction to Mathematical Optimal Control Theory, Lecture Notes, Univerisity of California, Berkeley, 2005. Google Scholar

[9]

H. O. Fattorini, Infinite Dimensional Linear Control Systems. The Time Optimal and Norm Optimal Control Problems, North-Holland Mathematics Studies, 201, Elsevier Science B.V., Amsterdam, 2005.  Google Scholar

[10]

H. O. Fattorini, Time and norm optimal controls: A survey of recent results and open problems, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 2203-2218.  doi: 10.1016/S0252-9602(11)60394-9.  Google Scholar

[11]

J. P. LaSalle, Time optimal control systems, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 573-577.  doi: 10.1073/pnas.45.4.573.  Google Scholar

[12]

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations, SIAM J. Control Optim., 49 (2011), 73-105.  doi: 10.1137/090764232.  Google Scholar

[13]

L. Poggiolini, Structural stability of bang-bang trajectories with a double switching time in the minimum time problem, SIAM J. Control Optim., 55 (2017), 3779-3798.  doi: 10.1137/16M1083761.  Google Scholar

[14]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience Publishers John Wiley & Sons, Inc., New York-London 1962.  Google Scholar

[15]

S. Qin and G. Wang, Controllability of impulse controlled systems of heat equations coupled by constant matrices, J. Differential Equations, 263 (2017), 6456-6493.  doi: 10.1016/j.jde.2017.07.018.  Google Scholar

[16]

E. D. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[17]

H. J. Sussmann, A bang-bang theorem with bounds on the number of switchings, SIAM J. Control Optim., 17 (1979), 629-651.  doi: 10.1137/0317045.  Google Scholar

[18]

G. Wang, L. Wang, Y. Xu and Y. Zhang, Time Optimal Control of Evolution Equations, Progress in Nonlinear Differential Equations and Their Applications, Subseries in Control, 92, Birkhäuser/Springer, Cham, 2018. doi: 10.1007/978-3-319-95363-2.  Google Scholar

[19]

G. Wang and Y. Zhang, Decompositions and bang-bang properties, Math. Control Relat. Fields, 7 (2017), 73-170.  doi: 10.3934/mcrf.2017005.  Google Scholar

[1]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[2]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[5]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[6]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[7]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[8]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[9]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[10]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[11]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[12]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[13]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[14]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[15]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[16]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[17]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[18]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[19]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[20]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (17)
  • HTML views (43)
  • Cited by (0)

Other articles
by authors

[Back to Top]