doi: 10.3934/mcrf.2020040

General stability of abstract thermoelastic system with infinite memory and delay

School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi, 030006, China

Corresponding author: Jianghao Hao

Received  January 2020 Revised  July 2020 Published  October 2020

Fund Project: This research was partially supported by Natural Science Foundation of China (grant number 11871315, 61374089), Natural Science Foundation of Shanxi Province of China (grant number 201801D121003, 201901D111021)

In this paper we study an abstract thermoelastic system in Hilbert space with infinite memory and time delay. Under some suitable conditions, we prove the well-posedness by invoking semigroup theory. Since the damping may stabilize the system while the delay may destabilize it, we discuss the interaction between the damping and the delay term, and obtain that the system is uniformly stable when the effect of damping is greater than that of time delay. By establishing suitable Lyapunov functionals which are equivalent to the energy of system we also establish the general energy decay results for abstract thermoelastic system.

Citation: Jianghao Hao, Junna Zhang. General stability of abstract thermoelastic system with infinite memory and delay. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020040
References:
[1]

M. Afilal and A. Soufyane, General decay for a porous thermoelastic system with a memory, Appl. Anal., 98 (2019), 638-650.  doi: 10.1080/00036811.2017.1399363.  Google Scholar

[2]

F. Alabau-Boussouira and P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C. R. Math. Acad. Sci. Paris, 347 (2009), 867-872.  doi: 10.1016/j.crma.2009.05.011.  Google Scholar

[3]

F. Alabau-Boussouira, S. Nicaise and C. Pignotti, Exponential stability of the wave equation with memory and time delay, in New Prospects in Direct, Inverse and Control Problems for Evolution Equations, Springer INdAM Ser., 10, Springer, Cham, 2014, 1–22. doi: 10.1007/978-3-319-11406-4_1.  Google Scholar

[4]

H. Brezis, Analyse Fonctionnelle. Théorie et Applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.  Google Scholar

[5]

C. Buriol, Energy decay rates for the Timoshenko system of thermoelastic plates, Nonlinear Anal., 64 (2006), 92-108.  doi: 10.1016/j.na.2005.06.010.  Google Scholar

[6]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[7]

E. FridmanS. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with time-dependent delay, SIAM J. Control Optim., 48 (2010), 5028-5052.  doi: 10.1137/090762105.  Google Scholar

[8]

A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory, J. Math. Anal. Appl., 382 (2011), 748-760.  doi: 10.1016/j.jmaa.2011.04.079.  Google Scholar

[9]

A. Guesmia, Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay, IMA J. Math. Control Inform., 30 (2013), 507-526.  doi: 10.1093/imamci/dns039.  Google Scholar

[10]

A. Guesmia and S. A. Messaoudi, A new approach to the stability of an abstract system in the presence of infinite history, J. Math. Anal. Appl., 416 (2014), 212-228.  doi: 10.1016/j.jmaa.2014.02.030.  Google Scholar

[11]

J. Hao and P. Wang, General stability result of abstract thermoelastic system with infinite memory, Bull. Malays. Math. Sci. Soc., 42 (2019), 2549-2567.  doi: 10.1007/s40840-018-0615-z.  Google Scholar

[12]

K.-P. JinJ. Liang and T.-J. Xiao, Asymptotic behavior for coupled systems of second order abstract evolution equations with one infinite memory, J. Math. Anal. Appl., 475 (2019), 554-575.  doi: 10.1016/j.jmaa.2019.02.055.  Google Scholar

[13]

K.-P. JinJ. Liang and T.-J. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Differential Equations, 257 (2014), 1501-1528.  doi: 10.1016/j.jde.2014.05.018.  Google Scholar

[14]

M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62 (2011), 1065-1082.  doi: 10.1007/s00033-011-0145-0.  Google Scholar

[15]

I. Lasiecka, S. A. Messaoudi and M. I. Mustafa, Note on intrinsic decay rates for abstract wave equations with memory, J. Math. Phys., 54 (2013), 18pp. doi: 10.1063/1.4793988.  Google Scholar

[16]

M. J. LeeJ. Y. Park and Y. H. Kang, Asymptotic stability of a problem with Balakrishnan-Taylor damping and a time delay, Comput. Math. Appl., 70 (2015), 478-487.  doi: 10.1016/j.camwa.2015.05.004.  Google Scholar

[17]

S. Mesloub and F. Mesloub, On a coupled nonlinear singular thermoelastic system, Nonlinear Anal., 73 (2010), 3195-3208.  doi: 10.1016/j.na.2010.06.082.  Google Scholar

[18]

S. A. Messaoudi and W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Appl. Math. Lett., 66 (2017), 16-22.  doi: 10.1016/j.aml.2016.11.002.  Google Scholar

[19]

J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory, J. Math. Anal. Appl., 326 (2007), 691-707.  doi: 10.1016/j.jmaa.2006.03.022.  Google Scholar

[20]

J. E. Muñoz RiveraM. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704.  doi: 10.1016/S0022-247X(03)00511-0.  Google Scholar

[21]

J. E. Muñoz Rivera and M. G. Naso, Optimal energy decay rate for a class of weakly dissipative second-order systems with memory, Appl. Math. Lett., 23 (2010), 743-746.  doi: 10.1016/j.aml.2010.02.016.  Google Scholar

[22]

M. I. Mustafa, Asymptotic behavior of second sound thermoelasticity with internal time-varying delay, Z. Angew. Math. Phys., 64 (2013), 1353-1362.  doi: 10.1007/s00033-012-0268-y.  Google Scholar

[23]

S. Nicaise and C. Pignotti, Asymptotic stability of second-order evolution equations with intermittent delay, Adv. Differential Equations, 17 (2012), 879-902.   Google Scholar

[24]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[26]

C. Pignotti, Stability results for second-order evolution equations with memory and switching time-delay, J. Dynam. Differential Equations, 29 (2017), 1309-1324.  doi: 10.1007/s10884-016-9545-3.  Google Scholar

[27]

A. G. Ramm, Stability of solutions to abstract evolution equations with delay, J. Math. Anal. Appl., 396 (2012), 523-527.  doi: 10.1016/j.jmaa.2012.06.033.  Google Scholar

[28]

Z. Yang, Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay, Z. Angew. Math. Phys., 66 (2015), 727-745.  doi: 10.1007/s00033-014-0429-2.  Google Scholar

[29]

A. Youkana, Stability of an abstract system with infinite history, preprint, arXiv: 1805.07964. Google Scholar

show all references

References:
[1]

M. Afilal and A. Soufyane, General decay for a porous thermoelastic system with a memory, Appl. Anal., 98 (2019), 638-650.  doi: 10.1080/00036811.2017.1399363.  Google Scholar

[2]

F. Alabau-Boussouira and P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C. R. Math. Acad. Sci. Paris, 347 (2009), 867-872.  doi: 10.1016/j.crma.2009.05.011.  Google Scholar

[3]

F. Alabau-Boussouira, S. Nicaise and C. Pignotti, Exponential stability of the wave equation with memory and time delay, in New Prospects in Direct, Inverse and Control Problems for Evolution Equations, Springer INdAM Ser., 10, Springer, Cham, 2014, 1–22. doi: 10.1007/978-3-319-11406-4_1.  Google Scholar

[4]

H. Brezis, Analyse Fonctionnelle. Théorie et Applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.  Google Scholar

[5]

C. Buriol, Energy decay rates for the Timoshenko system of thermoelastic plates, Nonlinear Anal., 64 (2006), 92-108.  doi: 10.1016/j.na.2005.06.010.  Google Scholar

[6]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[7]

E. FridmanS. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with time-dependent delay, SIAM J. Control Optim., 48 (2010), 5028-5052.  doi: 10.1137/090762105.  Google Scholar

[8]

A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory, J. Math. Anal. Appl., 382 (2011), 748-760.  doi: 10.1016/j.jmaa.2011.04.079.  Google Scholar

[9]

A. Guesmia, Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay, IMA J. Math. Control Inform., 30 (2013), 507-526.  doi: 10.1093/imamci/dns039.  Google Scholar

[10]

A. Guesmia and S. A. Messaoudi, A new approach to the stability of an abstract system in the presence of infinite history, J. Math. Anal. Appl., 416 (2014), 212-228.  doi: 10.1016/j.jmaa.2014.02.030.  Google Scholar

[11]

J. Hao and P. Wang, General stability result of abstract thermoelastic system with infinite memory, Bull. Malays. Math. Sci. Soc., 42 (2019), 2549-2567.  doi: 10.1007/s40840-018-0615-z.  Google Scholar

[12]

K.-P. JinJ. Liang and T.-J. Xiao, Asymptotic behavior for coupled systems of second order abstract evolution equations with one infinite memory, J. Math. Anal. Appl., 475 (2019), 554-575.  doi: 10.1016/j.jmaa.2019.02.055.  Google Scholar

[13]

K.-P. JinJ. Liang and T.-J. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Differential Equations, 257 (2014), 1501-1528.  doi: 10.1016/j.jde.2014.05.018.  Google Scholar

[14]

M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62 (2011), 1065-1082.  doi: 10.1007/s00033-011-0145-0.  Google Scholar

[15]

I. Lasiecka, S. A. Messaoudi and M. I. Mustafa, Note on intrinsic decay rates for abstract wave equations with memory, J. Math. Phys., 54 (2013), 18pp. doi: 10.1063/1.4793988.  Google Scholar

[16]

M. J. LeeJ. Y. Park and Y. H. Kang, Asymptotic stability of a problem with Balakrishnan-Taylor damping and a time delay, Comput. Math. Appl., 70 (2015), 478-487.  doi: 10.1016/j.camwa.2015.05.004.  Google Scholar

[17]

S. Mesloub and F. Mesloub, On a coupled nonlinear singular thermoelastic system, Nonlinear Anal., 73 (2010), 3195-3208.  doi: 10.1016/j.na.2010.06.082.  Google Scholar

[18]

S. A. Messaoudi and W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Appl. Math. Lett., 66 (2017), 16-22.  doi: 10.1016/j.aml.2016.11.002.  Google Scholar

[19]

J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory, J. Math. Anal. Appl., 326 (2007), 691-707.  doi: 10.1016/j.jmaa.2006.03.022.  Google Scholar

[20]

J. E. Muñoz RiveraM. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704.  doi: 10.1016/S0022-247X(03)00511-0.  Google Scholar

[21]

J. E. Muñoz Rivera and M. G. Naso, Optimal energy decay rate for a class of weakly dissipative second-order systems with memory, Appl. Math. Lett., 23 (2010), 743-746.  doi: 10.1016/j.aml.2010.02.016.  Google Scholar

[22]

M. I. Mustafa, Asymptotic behavior of second sound thermoelasticity with internal time-varying delay, Z. Angew. Math. Phys., 64 (2013), 1353-1362.  doi: 10.1007/s00033-012-0268-y.  Google Scholar

[23]

S. Nicaise and C. Pignotti, Asymptotic stability of second-order evolution equations with intermittent delay, Adv. Differential Equations, 17 (2012), 879-902.   Google Scholar

[24]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[26]

C. Pignotti, Stability results for second-order evolution equations with memory and switching time-delay, J. Dynam. Differential Equations, 29 (2017), 1309-1324.  doi: 10.1007/s10884-016-9545-3.  Google Scholar

[27]

A. G. Ramm, Stability of solutions to abstract evolution equations with delay, J. Math. Anal. Appl., 396 (2012), 523-527.  doi: 10.1016/j.jmaa.2012.06.033.  Google Scholar

[28]

Z. Yang, Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay, Z. Angew. Math. Phys., 66 (2015), 727-745.  doi: 10.1007/s00033-014-0429-2.  Google Scholar

[29]

A. Youkana, Stability of an abstract system with infinite history, preprint, arXiv: 1805.07964. Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[5]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[6]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[7]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[8]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[9]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[10]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[11]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[12]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[13]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[14]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[15]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[16]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[17]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[18]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[19]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[20]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (25)
  • HTML views (56)
  • Cited by (0)

Other articles
by authors

[Back to Top]