June  2021, 11(2): 353-371. doi: 10.3934/mcrf.2020040

General stability of abstract thermoelastic system with infinite memory and delay

School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi, 030006, China

Corresponding author: Jianghao Hao

Received  January 2020 Revised  July 2020 Published  June 2021 Early access  October 2020

Fund Project: This research was partially supported by Natural Science Foundation of China (grant number 11871315, 61374089), Natural Science Foundation of Shanxi Province of China (grant number 201801D121003, 201901D111021)

In this paper we study an abstract thermoelastic system in Hilbert space with infinite memory and time delay. Under some suitable conditions, we prove the well-posedness by invoking semigroup theory. Since the damping may stabilize the system while the delay may destabilize it, we discuss the interaction between the damping and the delay term, and obtain that the system is uniformly stable when the effect of damping is greater than that of time delay. By establishing suitable Lyapunov functionals which are equivalent to the energy of system we also establish the general energy decay results for abstract thermoelastic system.

Citation: Jianghao Hao, Junna Zhang. General stability of abstract thermoelastic system with infinite memory and delay. Mathematical Control and Related Fields, 2021, 11 (2) : 353-371. doi: 10.3934/mcrf.2020040
References:
[1]

M. Afilal and A. Soufyane, General decay for a porous thermoelastic system with a memory, Appl. Anal., 98 (2019), 638-650.  doi: 10.1080/00036811.2017.1399363.

[2]

F. Alabau-Boussouira and P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C. R. Math. Acad. Sci. Paris, 347 (2009), 867-872.  doi: 10.1016/j.crma.2009.05.011.

[3]

F. Alabau-Boussouira, S. Nicaise and C. Pignotti, Exponential stability of the wave equation with memory and time delay, in New Prospects in Direct, Inverse and Control Problems for Evolution Equations, Springer INdAM Ser., 10, Springer, Cham, 2014, 1–22. doi: 10.1007/978-3-319-11406-4_1.

[4]

H. Brezis, Analyse Fonctionnelle. Théorie et Applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.

[5]

C. Buriol, Energy decay rates for the Timoshenko system of thermoelastic plates, Nonlinear Anal., 64 (2006), 92-108.  doi: 10.1016/j.na.2005.06.010.

[6]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.

[7]

E. FridmanS. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with time-dependent delay, SIAM J. Control Optim., 48 (2010), 5028-5052.  doi: 10.1137/090762105.

[8]

A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory, J. Math. Anal. Appl., 382 (2011), 748-760.  doi: 10.1016/j.jmaa.2011.04.079.

[9]

A. Guesmia, Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay, IMA J. Math. Control Inform., 30 (2013), 507-526.  doi: 10.1093/imamci/dns039.

[10]

A. Guesmia and S. A. Messaoudi, A new approach to the stability of an abstract system in the presence of infinite history, J. Math. Anal. Appl., 416 (2014), 212-228.  doi: 10.1016/j.jmaa.2014.02.030.

[11]

J. Hao and P. Wang, General stability result of abstract thermoelastic system with infinite memory, Bull. Malays. Math. Sci. Soc., 42 (2019), 2549-2567.  doi: 10.1007/s40840-018-0615-z.

[12]

K.-P. JinJ. Liang and T.-J. Xiao, Asymptotic behavior for coupled systems of second order abstract evolution equations with one infinite memory, J. Math. Anal. Appl., 475 (2019), 554-575.  doi: 10.1016/j.jmaa.2019.02.055.

[13]

K.-P. JinJ. Liang and T.-J. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Differential Equations, 257 (2014), 1501-1528.  doi: 10.1016/j.jde.2014.05.018.

[14]

M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62 (2011), 1065-1082.  doi: 10.1007/s00033-011-0145-0.

[15]

I. Lasiecka, S. A. Messaoudi and M. I. Mustafa, Note on intrinsic decay rates for abstract wave equations with memory, J. Math. Phys., 54 (2013), 18pp. doi: 10.1063/1.4793988.

[16]

M. J. LeeJ. Y. Park and Y. H. Kang, Asymptotic stability of a problem with Balakrishnan-Taylor damping and a time delay, Comput. Math. Appl., 70 (2015), 478-487.  doi: 10.1016/j.camwa.2015.05.004.

[17]

S. Mesloub and F. Mesloub, On a coupled nonlinear singular thermoelastic system, Nonlinear Anal., 73 (2010), 3195-3208.  doi: 10.1016/j.na.2010.06.082.

[18]

S. A. Messaoudi and W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Appl. Math. Lett., 66 (2017), 16-22.  doi: 10.1016/j.aml.2016.11.002.

[19]

J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory, J. Math. Anal. Appl., 326 (2007), 691-707.  doi: 10.1016/j.jmaa.2006.03.022.

[20]

J. E. Muñoz RiveraM. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704.  doi: 10.1016/S0022-247X(03)00511-0.

[21]

J. E. Muñoz Rivera and M. G. Naso, Optimal energy decay rate for a class of weakly dissipative second-order systems with memory, Appl. Math. Lett., 23 (2010), 743-746.  doi: 10.1016/j.aml.2010.02.016.

[22]

M. I. Mustafa, Asymptotic behavior of second sound thermoelasticity with internal time-varying delay, Z. Angew. Math. Phys., 64 (2013), 1353-1362.  doi: 10.1007/s00033-012-0268-y.

[23]

S. Nicaise and C. Pignotti, Asymptotic stability of second-order evolution equations with intermittent delay, Adv. Differential Equations, 17 (2012), 879-902. 

[24]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[26]

C. Pignotti, Stability results for second-order evolution equations with memory and switching time-delay, J. Dynam. Differential Equations, 29 (2017), 1309-1324.  doi: 10.1007/s10884-016-9545-3.

[27]

A. G. Ramm, Stability of solutions to abstract evolution equations with delay, J. Math. Anal. Appl., 396 (2012), 523-527.  doi: 10.1016/j.jmaa.2012.06.033.

[28]

Z. Yang, Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay, Z. Angew. Math. Phys., 66 (2015), 727-745.  doi: 10.1007/s00033-014-0429-2.

[29]

A. Youkana, Stability of an abstract system with infinite history, preprint, arXiv: 1805.07964.

show all references

References:
[1]

M. Afilal and A. Soufyane, General decay for a porous thermoelastic system with a memory, Appl. Anal., 98 (2019), 638-650.  doi: 10.1080/00036811.2017.1399363.

[2]

F. Alabau-Boussouira and P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C. R. Math. Acad. Sci. Paris, 347 (2009), 867-872.  doi: 10.1016/j.crma.2009.05.011.

[3]

F. Alabau-Boussouira, S. Nicaise and C. Pignotti, Exponential stability of the wave equation with memory and time delay, in New Prospects in Direct, Inverse and Control Problems for Evolution Equations, Springer INdAM Ser., 10, Springer, Cham, 2014, 1–22. doi: 10.1007/978-3-319-11406-4_1.

[4]

H. Brezis, Analyse Fonctionnelle. Théorie et Applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.

[5]

C. Buriol, Energy decay rates for the Timoshenko system of thermoelastic plates, Nonlinear Anal., 64 (2006), 92-108.  doi: 10.1016/j.na.2005.06.010.

[6]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.

[7]

E. FridmanS. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with time-dependent delay, SIAM J. Control Optim., 48 (2010), 5028-5052.  doi: 10.1137/090762105.

[8]

A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory, J. Math. Anal. Appl., 382 (2011), 748-760.  doi: 10.1016/j.jmaa.2011.04.079.

[9]

A. Guesmia, Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay, IMA J. Math. Control Inform., 30 (2013), 507-526.  doi: 10.1093/imamci/dns039.

[10]

A. Guesmia and S. A. Messaoudi, A new approach to the stability of an abstract system in the presence of infinite history, J. Math. Anal. Appl., 416 (2014), 212-228.  doi: 10.1016/j.jmaa.2014.02.030.

[11]

J. Hao and P. Wang, General stability result of abstract thermoelastic system with infinite memory, Bull. Malays. Math. Sci. Soc., 42 (2019), 2549-2567.  doi: 10.1007/s40840-018-0615-z.

[12]

K.-P. JinJ. Liang and T.-J. Xiao, Asymptotic behavior for coupled systems of second order abstract evolution equations with one infinite memory, J. Math. Anal. Appl., 475 (2019), 554-575.  doi: 10.1016/j.jmaa.2019.02.055.

[13]

K.-P. JinJ. Liang and T.-J. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Differential Equations, 257 (2014), 1501-1528.  doi: 10.1016/j.jde.2014.05.018.

[14]

M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62 (2011), 1065-1082.  doi: 10.1007/s00033-011-0145-0.

[15]

I. Lasiecka, S. A. Messaoudi and M. I. Mustafa, Note on intrinsic decay rates for abstract wave equations with memory, J. Math. Phys., 54 (2013), 18pp. doi: 10.1063/1.4793988.

[16]

M. J. LeeJ. Y. Park and Y. H. Kang, Asymptotic stability of a problem with Balakrishnan-Taylor damping and a time delay, Comput. Math. Appl., 70 (2015), 478-487.  doi: 10.1016/j.camwa.2015.05.004.

[17]

S. Mesloub and F. Mesloub, On a coupled nonlinear singular thermoelastic system, Nonlinear Anal., 73 (2010), 3195-3208.  doi: 10.1016/j.na.2010.06.082.

[18]

S. A. Messaoudi and W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Appl. Math. Lett., 66 (2017), 16-22.  doi: 10.1016/j.aml.2016.11.002.

[19]

J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory, J. Math. Anal. Appl., 326 (2007), 691-707.  doi: 10.1016/j.jmaa.2006.03.022.

[20]

J. E. Muñoz RiveraM. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704.  doi: 10.1016/S0022-247X(03)00511-0.

[21]

J. E. Muñoz Rivera and M. G. Naso, Optimal energy decay rate for a class of weakly dissipative second-order systems with memory, Appl. Math. Lett., 23 (2010), 743-746.  doi: 10.1016/j.aml.2010.02.016.

[22]

M. I. Mustafa, Asymptotic behavior of second sound thermoelasticity with internal time-varying delay, Z. Angew. Math. Phys., 64 (2013), 1353-1362.  doi: 10.1007/s00033-012-0268-y.

[23]

S. Nicaise and C. Pignotti, Asymptotic stability of second-order evolution equations with intermittent delay, Adv. Differential Equations, 17 (2012), 879-902. 

[24]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[26]

C. Pignotti, Stability results for second-order evolution equations with memory and switching time-delay, J. Dynam. Differential Equations, 29 (2017), 1309-1324.  doi: 10.1007/s10884-016-9545-3.

[27]

A. G. Ramm, Stability of solutions to abstract evolution equations with delay, J. Math. Anal. Appl., 396 (2012), 523-527.  doi: 10.1016/j.jmaa.2012.06.033.

[28]

Z. Yang, Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay, Z. Angew. Math. Phys., 66 (2015), 727-745.  doi: 10.1007/s00033-014-0429-2.

[29]

A. Youkana, Stability of an abstract system with infinite history, preprint, arXiv: 1805.07964.

[1]

Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure and Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457

[2]

Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control and Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451

[3]

Alessandro Paolucci, Cristina Pignotti. Well-posedness and stability for semilinear wave-type equations with time delay. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1561-1571. doi: 10.3934/dcdss.2022049

[4]

Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure and Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605

[5]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[6]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2039-2064. doi: 10.3934/cpaa.2021057

[7]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[8]

Akram Ben Aissa. Well-posedness and direct internal stability of coupled non-degenrate Kirchhoff system via heat conduction. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 983-993. doi: 10.3934/dcdss.2021106

[9]

Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Global well-posedness and long time behaviors of chemotaxis-fluid system modeling coral fertilization. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2135-2163. doi: 10.3934/dcds.2020109

[10]

Xin-Guang Yang, Jing Zhang, Shu Wang. Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1493-1515. doi: 10.3934/dcds.2020084

[11]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure and Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[12]

Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811

[13]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[14]

Manas Bhatnagar, Hailiang Liu. Well-posedness and critical thresholds in a nonlocal Euler system with relaxation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5271-5289. doi: 10.3934/dcds.2021076

[15]

Xujie Yang. Global well-posedness in a chemotaxis system with oxygen consumption. Communications on Pure and Applied Analysis, 2022, 21 (2) : 471-492. doi: 10.3934/cpaa.2021184

[16]

Akansha Sanwal. Local well-posedness for the Zakharov system in dimension d ≤ 3. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1067-1103. doi: 10.3934/dcds.2021147

[17]

Hartmut Pecher. Local well-posedness for the Maxwell-Dirac system in temporal gauge. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3065-3076. doi: 10.3934/dcds.2022008

[18]

Salim A. Messaoudi, Muhammad I. Mustafa. A general stability result in a memory-type Timoshenko system. Communications on Pure and Applied Analysis, 2013, 12 (2) : 957-972. doi: 10.3934/cpaa.2013.12.957

[19]

S. Gatti, Elena Sartori. Well-posedness results for phase field systems with memory effects in the order parameter dynamics. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 705-726. doi: 10.3934/dcds.2003.9.705

[20]

Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (246)
  • HTML views (180)
  • Cited by (0)

Other articles
by authors

[Back to Top]