The local geometry of sub-Finslerian structures in dimension 3 associated with a maximum norm is studied in the contact case. A normal form is given. The short extremals, the local switching, conjugate and cut loci, and the small spheres are described in the generic case.
Citation: |
[1] |
A. Agrachev, B. Bonnard, M. Chyba and I. Kupka, Sub-Riemannian sphere in Martinet flat case, ESAIM Control Optim. Calc. Var., 2 (1997), 377-448.
doi: 10.1051/cocv:1997114.![]() ![]() ![]() |
[2] |
A. A. Agrachev, U. Boscain, G. Charlot, R. Ghezzi and M. Sigalotti, Two-dimensional almost-Riemannian structures with tangency points, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 793-807.
doi: 10.1016/j.anihpc.2009.11.011.![]() ![]() ![]() |
[3] |
A. A. Agrachev, El-H. Chakir El-A. and J. P. Gauthier, Sub-Riemannian metrics on R3, In Geometric Control and Non-Holonomic Mechanics (Mexico City, 1996), CMS Conf. Proc., Vol. 25, Amer. Math. Soc., Providence, RI, 1998, 29–78.
![]() ![]() |
[4] |
A. A. Agrachev and J.-P. Gauthier, On the subanalyticity of Carnot-Caratheodory distances, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 359-382.
doi: 10.1016/S0294-1449(00)00064-0.![]() ![]() ![]() |
[5] |
A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, Vol. 87, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-662-06404-7.![]() ![]() ![]() |
[6] |
E. A.-L. Ali and G. Charlot, Local (sub)-Finslerian geometry for the maximum norms in dimension 2, J. Dyn. Control. Syst, 25 (2019), 457-490.
doi: 10.1007/s10883-019-09435-8.![]() ![]() ![]() |
[7] |
D. Barilari, U. Boscain, E. Le Donne and M. Sigalotti, Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions, J. Dyn. Control Syst., 23 (2017), 547-575.
doi: 10.1007/s10883-016-9341-8.![]() ![]() ![]() |
[8] |
D. Barilari, U. Boscain, G. Charlot and R. W. Neel, On the heat diffusion for generic Riemannian and sub-Riemannian structures, Int. Math. Res. Not. IMRN, (2017), 4639–4672.
doi: 10.1093/imrn/rnw141.![]() ![]() ![]() |
[9] |
D. Barilari, U. Boscain and R. W. Neel, Small-time heat kernel asymptotics at the sub-Riemannian cut locus, J. Differential Geom., 92 (2012), 373-416.
doi: 10.4310/jdg/1354110195.![]() ![]() ![]() |
[10] |
A. Bellaïche, The tangent space in sub-Riemannian geometry, In Sub-Riemannian Geometry, Progr. Math., Vol. 144, Birkhäuser, Basel, 1996, 1–78.
doi: 10.1007/978-3-0348-9210-0_1.![]() ![]() ![]() |
[11] |
G. Ben Arous, Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus, Ann. Sci. École Norm. Sup. (4), 21 (1988), 307-331.
doi: 10.24033/asens.1560.![]() ![]() ![]() |
[12] |
G. Ben Arous and R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale. Ⅱ, Probab. Theory Related Fields, 90 (1991), 377-402.
doi: 10.1007/BF01193751.![]() ![]() ![]() |
[13] |
B. Bonnard, M. Chyba and E. Trelat, Sub-Riemannian geometry, one-parameter deformation of the martinet flat case, J. Dynam. Control Systems, 4 (1998), 59-76.
doi: 10.1023/A:1022872916861.![]() ![]() ![]() |
[14] |
B. Bonnard, G. Charlot, R. Ghezzi and G. Janin, The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry, J. Dyn. Control Syst., 17 (2011), 141-161.
doi: 10.1007/s10883-011-9113-4.![]() ![]() ![]() |
[15] |
B. Bonnard and M. Chyba, Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-Riemannienne dans le cas Martinet, ESAIM Control Optim. Calc. Var., 4 (1999), 245-334.
doi: 10.1051/cocv:1999111.![]() ![]() ![]() |
[16] |
U. Boscain, G. Charlot and R. Ghezzi, Normal forms and invariants for 2-dimensional almost-Riemannian structures, Differential Geom. Appl., 31 (2013), 41-62.
doi: 10.1016/j.difgeo.2012.10.001.![]() ![]() ![]() |
[17] |
U. Boscain, G. Charlot, R. Ghezzi and M. Sigalotti, Lipschitz classification of almost-Riemannian distances on compact oriented surfaces, Journal of Geometric Analysis, 23 (2013), 438-455.
doi: 10.1007/s12220-011-9262-4.![]() ![]() ![]() |
[18] |
U. Boscain, T. Chambrion and G. Charlot, Nonisotropic 3-level quantum systems: Complete solutions for minimum time and minimum energy, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 957-990.
doi: 10.3934/dcdsb.2005.5.957.![]() ![]() ![]() |
[19] |
E. Breuillard and E. Le Donne, On the rate of convergence to the asymptotic cone for nilpotent groups and subFinsler geometry, Proc. Natl. Acad. Sci. USA, 110 (2013), 19220-19226.
doi: 10.1073/pnas.1203854109.![]() ![]() ![]() |
[20] |
G. Charlot, Quasi-contact s-r metrics: Normal form in $\mathbb{R}^2n$, wave front and caustic in $\mathbb{R}^4$, Acta App. Math., 74 (2002), 217-263.
doi: 10.1023/A:1021199303685.![]() ![]() ![]() |
[21] |
W.-L. Chow, Über systeme von linearen partiellen differentialgleichungen erster ordnung, Math. Ann., 117 (1939), 98-105.
doi: 10.1007/BF01450011.![]() ![]() ![]() |
[22] |
J. N. Clelland and C. G. Moseley, Sub-finsler geometry in dimension three, Differ. Geom. Appl., 24 (2006), 628-651.
doi: 10.1016/j.difgeo.2006.04.005.![]() ![]() ![]() |
[23] |
J. N. Clelland, C. G. Moseley and G. R. Wilkens, Geometry of sub-Finsler Engel manifolds, Asian J. Math., 11 (2007), 699-726.
doi: 10.4310/AJM.2007.v11.n4.a9.![]() ![]() ![]() |
[24] |
El-H. Ch. El-Alaoui, J.-P. Gauthier and I. Kupka, Small sub-Riemannian balls on $\mathbb{R}^{3}$, J. Dynam. Control Systems, 2 (1996), 359-421.
doi: 10.1007/BF02269424.![]() ![]() ![]() |
[25] |
A. F. Filippov, On some questions in the theory of optimal regulation: Existence of a solution of the problem of optimal regulation in the class of bounded measurable functions, Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him., 1959 (1959), 25-32.
![]() ![]() |
[26] |
M. W. Hirsch, Differential Topology, Graduate Texts in Mathematics, Vol. 33 Springer-Verlag, New York, 1994.
![]() ![]() |
[27] |
R. Léandre, Majoration en temps petit de la densité d'une diffusion dégénérée, Probab. Theory Related Fields, 74 (1987), 289-294.
doi: 10.1007/BF00569994.![]() ![]() ![]() |
[28] |
R. Léandre, Minoration en temps petit de la densité d'une diffusion dégénérée, J. Funct. Anal., 74 (1987), 399-414.
doi: 10.1016/0022-1236(87)90031-0.![]() ![]() ![]() |
[29] |
P. K. Rashevsky, About connecting two points of complete nonholonomic space by admissible curve, Uch. Zap. Ped. Inst. Libknehta, 2 (1938), 83-94.
![]() |
[30] |
M. Sigalotti, Bounds on time-optimal concatenations of arcs for two-input driftless 3D systems, preprint, 2019, arXiv: 1911.10811.
![]() |