doi: 10.3934/mcrf.2020042

Stable determination of a vector field in a non-Self-Adjoint dynamical Schrödinger equation on Riemannian manifolds

1. 

Université Tunis El Manar, Ecole Nationale d'ingénieurs de Tunis, ENIT-LAMSIN, B.P. 37, 1002 Tunis, Tunisia

2. 

Beijing Computational Science Research Center, Beijing 100193, China, and, Université Tunis El Manar, Faculté des Sciences de Tunis & ENIT-LAMSIN, B.P. 37, 1002 Tunis, Tunisia

* Corresponding author: Mourad Bellassoued

Received  January 2020 Revised  July 2020 Published  October 2020

This paper deals with an inverse problem for a non-self-adjoint Schrödinger equation on a compact Riemannian manifold. Our goal is to stably determine a real vector field from the dynamical Dirichlet-to-Neumann map. We establish in dimension $ n\geq2 $, an Hölder type stability estimate for the inverse problem under study. The proof is mainly based on the reduction to an equivalent problem for an electro-magnetic Schrödinger equation and the use of a Carleman estimate designed for elliptic operators.

Citation: Mourad Bellassoued, Ibtissem Ben Aïcha, Zouhour Rezig. Stable determination of a vector field in a non-Self-Adjoint dynamical Schrödinger equation on Riemannian manifolds. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020042
References:
[1]

M. Bellassoued, Stable determination of coefficients in the dynamical Schrödinger equation in a magnetic field, Inverse Problems, 33 (2017), 055009, 36 pp. doi: 10.1088/1361-6420/aa5fc5.  Google Scholar

[2]

M. Bellassoued and I. Ben Aïcha, Optimal stability for a first order coefficient in a non-self-adjoint wave equation from Dirichlet-to-Neumann map, Inverse Problems, 33 (2017), 105006, 23 pp. doi: 10.1088/1361-6420/aa8415.  Google Scholar

[3]

M. Bellassoued and H. Benjoud, Stability estimate for an inverse problem for the wave equation in a magnetic field, Appl. Anal, 87 (2008), 277-292.  doi: 10.1080/00036810801911264.  Google Scholar

[4]

M. Bellassoued and M. Choulli, Stability estimate for an inverse problem for the magnetic Schroödinger equation from the Dirichlet-to-Neumann map, J. Funct. Anal., 258 (2010), 161-195.  doi: 10.1016/j.jfa.2009.06.010.  Google Scholar

[5]

M. Bellassoued and Z. Rezig, Simultaneous determination of two coefficients in the Riemannian hyperbolic equation from boundary measurements, Ann. Global Anal. Geom., 56 (2019), 291-325.  doi: 10.1007/s10455-019-09668-7.  Google Scholar

[6]

M. Bellassoued and M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer, Tokyo, 2017. doi: 10.1007/978-4-431-56600-7.  Google Scholar

[7]

H. Ben Joud, A stability estimate for an inverse problem for the Schrödinger equation in a magnetic field from partial boundary measurements, Inverse Problems, 25 (2009), 045012, 23 pp. doi: 10.1088/0266-5611/25/4/045012.  Google Scholar

[8]

J. ChengG. Nakamura and E. Somersalo, Uniqueness of identifying the convection term, Communications of the Korean Mathematical Society, 16 (2001), 405-413.   Google Scholar

[9]

N. S. Dairbekov, Integral geometry problem for nontrapping manifolds, Inverse Problems, 22 (2006), 431-445.  doi: 10.1088/0266-5611/22/2/003.  Google Scholar

[10]

Y. Kian and E. Soccorsi, Hölder stably determining the time-dependent electromagnetic potential of the Schrödinger equation, SIAM J. Math. Anal., 51 (2019), 627-647.  doi: 10.1137/18M1197308.  Google Scholar

[11]

Y. Kian and A. Tetlow, Hölder stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic Schrödinger equation, Inverse Probl. Imaging, 14 (2020), 819-839.  doi: 10.3934/ipi.2020038.  Google Scholar

[12]

K. Krupchyk and G. Uhlmann, Inverse problems for advection diffusion equations in admissible geometries, Comm. Partial Differential Equations, 43 (2018), 585-615.  doi: 10.1080/03605302.2018.1446163.  Google Scholar

[13]

Y. V. Kurylev and M. Lassas, The multidimensional Gel'fand inverse problem for non-self-adjoint operators, Inverse Problems, 13 (1997), 1495-1501.  doi: 10.1088/0266-5611/13/6/006.  Google Scholar

[14]

R. G. Muhometov, The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry, Dokl. Akad. Nauk SSSR, 232 (1977), 32-35.   Google Scholar

[15]

V. Pohjola, A uniqueness result for an inverse problem of the steady state convection diffusion equation, SIAM J. Math. Anal., 47 (2015), 2084-2103.  doi: 10.1137/140970926.  Google Scholar

[16]

L. Pestov and G. Uhlmann, On characterization of the range and inversion of formulas for the geodesic $X$-ray transform, Int. Math. Res. Not., 2004 (2004) 4331–4347. doi: 10.1155/S1073792804142116.  Google Scholar

[17]

M. Salo, Inverse problems for nonsmooth first order perturbation of the Laplacian, Ann. Acad. Sci. Fenn. Math. Diss., 139 (2004), 67 pp.  Google Scholar

[18]

V. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, 1994. doi: 10.1515/9783110900095.  Google Scholar

[19]

P. Stefanov and G. Uhlmann, Stable determination of generic simple metrics from the hyperbolic Dirichlet-to-Neumann map, Int. Math. Res. Not., 17 (2005), 1047-1061.  doi: 10.1155/IMRN.2005.1047.  Google Scholar

[20]

P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity, Duke Math. J., 123 (2004), 445-467.  doi: 10.1215/S0012-7094-04-12332-2.  Google Scholar

[21]

Z. Q. Sun, An inverse boundary value problem for Schrödinger operators with vector potentials, Trans. Amer. Math. Soc., 388 (1993), 953-969.  doi: 10.2307/2154438.  Google Scholar

show all references

References:
[1]

M. Bellassoued, Stable determination of coefficients in the dynamical Schrödinger equation in a magnetic field, Inverse Problems, 33 (2017), 055009, 36 pp. doi: 10.1088/1361-6420/aa5fc5.  Google Scholar

[2]

M. Bellassoued and I. Ben Aïcha, Optimal stability for a first order coefficient in a non-self-adjoint wave equation from Dirichlet-to-Neumann map, Inverse Problems, 33 (2017), 105006, 23 pp. doi: 10.1088/1361-6420/aa8415.  Google Scholar

[3]

M. Bellassoued and H. Benjoud, Stability estimate for an inverse problem for the wave equation in a magnetic field, Appl. Anal, 87 (2008), 277-292.  doi: 10.1080/00036810801911264.  Google Scholar

[4]

M. Bellassoued and M. Choulli, Stability estimate for an inverse problem for the magnetic Schroödinger equation from the Dirichlet-to-Neumann map, J. Funct. Anal., 258 (2010), 161-195.  doi: 10.1016/j.jfa.2009.06.010.  Google Scholar

[5]

M. Bellassoued and Z. Rezig, Simultaneous determination of two coefficients in the Riemannian hyperbolic equation from boundary measurements, Ann. Global Anal. Geom., 56 (2019), 291-325.  doi: 10.1007/s10455-019-09668-7.  Google Scholar

[6]

M. Bellassoued and M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer, Tokyo, 2017. doi: 10.1007/978-4-431-56600-7.  Google Scholar

[7]

H. Ben Joud, A stability estimate for an inverse problem for the Schrödinger equation in a magnetic field from partial boundary measurements, Inverse Problems, 25 (2009), 045012, 23 pp. doi: 10.1088/0266-5611/25/4/045012.  Google Scholar

[8]

J. ChengG. Nakamura and E. Somersalo, Uniqueness of identifying the convection term, Communications of the Korean Mathematical Society, 16 (2001), 405-413.   Google Scholar

[9]

N. S. Dairbekov, Integral geometry problem for nontrapping manifolds, Inverse Problems, 22 (2006), 431-445.  doi: 10.1088/0266-5611/22/2/003.  Google Scholar

[10]

Y. Kian and E. Soccorsi, Hölder stably determining the time-dependent electromagnetic potential of the Schrödinger equation, SIAM J. Math. Anal., 51 (2019), 627-647.  doi: 10.1137/18M1197308.  Google Scholar

[11]

Y. Kian and A. Tetlow, Hölder stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic Schrödinger equation, Inverse Probl. Imaging, 14 (2020), 819-839.  doi: 10.3934/ipi.2020038.  Google Scholar

[12]

K. Krupchyk and G. Uhlmann, Inverse problems for advection diffusion equations in admissible geometries, Comm. Partial Differential Equations, 43 (2018), 585-615.  doi: 10.1080/03605302.2018.1446163.  Google Scholar

[13]

Y. V. Kurylev and M. Lassas, The multidimensional Gel'fand inverse problem for non-self-adjoint operators, Inverse Problems, 13 (1997), 1495-1501.  doi: 10.1088/0266-5611/13/6/006.  Google Scholar

[14]

R. G. Muhometov, The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry, Dokl. Akad. Nauk SSSR, 232 (1977), 32-35.   Google Scholar

[15]

V. Pohjola, A uniqueness result for an inverse problem of the steady state convection diffusion equation, SIAM J. Math. Anal., 47 (2015), 2084-2103.  doi: 10.1137/140970926.  Google Scholar

[16]

L. Pestov and G. Uhlmann, On characterization of the range and inversion of formulas for the geodesic $X$-ray transform, Int. Math. Res. Not., 2004 (2004) 4331–4347. doi: 10.1155/S1073792804142116.  Google Scholar

[17]

M. Salo, Inverse problems for nonsmooth first order perturbation of the Laplacian, Ann. Acad. Sci. Fenn. Math. Diss., 139 (2004), 67 pp.  Google Scholar

[18]

V. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, 1994. doi: 10.1515/9783110900095.  Google Scholar

[19]

P. Stefanov and G. Uhlmann, Stable determination of generic simple metrics from the hyperbolic Dirichlet-to-Neumann map, Int. Math. Res. Not., 17 (2005), 1047-1061.  doi: 10.1155/IMRN.2005.1047.  Google Scholar

[20]

P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity, Duke Math. J., 123 (2004), 445-467.  doi: 10.1215/S0012-7094-04-12332-2.  Google Scholar

[21]

Z. Q. Sun, An inverse boundary value problem for Schrödinger operators with vector potentials, Trans. Amer. Math. Soc., 388 (1993), 953-969.  doi: 10.2307/2154438.  Google Scholar

[1]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[2]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[3]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[4]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[5]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[6]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[7]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[8]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[9]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[10]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[11]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[12]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[13]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[14]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[15]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[19]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[20]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (17)
  • HTML views (54)
  • Cited by (0)

[Back to Top]