\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Extended backward stochastic Volterra integral equations and their applications to time-Inconsistent stochastic recursive control problems

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we study extended backward stochastic Volterra integral equations (EBSVIEs, for short). We establish the well-posedness under weaker assumptions than the literature, and prove a new kind of regularity property for the solutions. As an application, we investigate, in the open-loop framework, a time-inconsistent stochastic recursive control problem where the cost functional is defined by the solution to a backward stochastic Volterra integral equation (BSVIE, for short). We show that the corresponding adjoint equations become EBSVIEs, and provide a necessary and sufficient condition for an open-loop equilibrium control via variational methods.

    Mathematics Subject Classification: Primary: 93E20, 60H20; Secondary: 49K45, 47J30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] I. Alia, A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion, Math. Control Relat. Fields, 9 (2019), 541-570.  doi: 10.3934/mcrf.2019025.
    [2] I. Alia, F. Chighoub, N. Khelfallah and J. Vives, Time-consistent investment and consumption strategies under a general discount function, preprint, 2020, arXiv: 1705.10602.
    [3] T. BjörkM. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance Stoch., 21 (2017), 331-360.  doi: 10.1007/s00780-017-0327-5.
    [4] B. Djehiche and M. Huang, A characterization of sub-game perfect equilibria for SDEs of mean-field type, Dyn. Games Appl., 6 (2016), 55-81.  doi: 10.1007/s13235-015-0140-8.
    [5] I. Ekeland and T. A. Pirvu, Investment and consumption without commitment, Math. Financ. Econ., 2 (2008), 57-86.  doi: 10.1007/s11579-008-0014-6.
    [6] N. El KarouiS. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.  doi: 10.1111/1467-9965.00022.
    [7] Y. Hamaguchi, Small-time solvability of a flow of forward-backward stochastic differential equations, Appl. Math. Optim., 2020. doi: 10.1007/s00245-020-09654-7.
    [8] Y. Hamaguchi, Time-inconsistent consumption-investment problems in incomplete markets under general discount functions, preprint, 2020, arXiv: 1912.01281.
    [9] C. Hernández and D. Possamaï, A unified approach to well-posedness of Type-Ⅰ backward stochastic Volterra integral equations, preprint, 2020, arXiv: 2007.12258.
    [10] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, AMS, Providence, RI, 1957.
    [11] M. Hu, Stochastic global maximum principle for optimization with recursive utilities, Probab. Uncertain. Quant. Risk, 2 (2017), 1-20.  doi: 10.1186/s41546-017-0014-7.
    [12] Y. Hu, J. Huang and X. Li, Equilibrium for time-inconsistent stochastic linear-quadratic control under constraint, preprint, 2020, arXiv: 1703.09415. doi: 10.1137/15M1019040.
    [13] Y. HuH. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM J. Control Optim., 50 (2012), 1548-1572.  doi: 10.1137/110853960.
    [14] Y. HuH. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control: Characterization and uniqueness of equilibrium, SIAM J. Control Optim., 55 (2017), 1261-1279.  doi: 10.1137/15M1019040.
    [15] J. Lin, Adapted solutions of a backward stochastic nonlinear Volterra integral equation, Stoch. Anal. Appl., 20 (2002), 165-183.  doi: 10.1081/SAP-120002426.
    [16] S. Peng, A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., 28 (1990), 966-979.  doi: 10.1137/0328054.
    [17] Y. Shi and T. Wang, Solvability of general backward stochastic Volterra integral equations, J. Korean Math. Soc., 49 (2012), 1301-1321.  doi: 10.4134/JKMS.2012.49.6.1301.
    [18] Y. ShiT. Wang and J. Yong, Optimal control problems of forward-backward stochastic Volterra integral equations, Math. Control Relat. Fields, 5 (2015), 613-649.  doi: 10.3934/mcrf.2015.5.613.
    [19] Y. ShiJ. Wen and J. Xiong, Backward doubly stochastic Volterra integral equations and their applications, J. Differential Equations, 269 (2020), 6492-6528.  doi: 10.1016/j.jde.2020.05.006.
    [20] R. Strotz, Myopia and inconsistency in dynamic utility maximization, Readings in Welfare Economics, 23 (1973), 128-143. 
    [21] H. Wang, Extended backward stochastic Volterra integral equations, quasilinear parabolic equations, and Feynman–Kac formula, Stoch. Dyn., 2020. doi: 10.1142/S0219493721500040.
    [22] H. Wang, J. Sun and J. Yong, Recursive utility processes, dynamic risk measures and quadratic backward stochastic Volterra integral equations, Appl. Math. Optim., 2019.
    [23] H. Wang and J. Yong, Time-inconsistent stochastic optimal control problems and backward stochastic Volterra integral equations, preprint, 2019, arXiv: 1911.04995.
    [24] T. Wang, Characterization of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I, Math. Control Relat. Fields, 9 (2019), 385-409.  doi: 10.3934/mcrf.2019018.
    [25] T. Wang, Equilibrium controls in time inconsistent stochastic linear quadratic problems, Appl. Math. Optim., 81 (2020), 591-619.  doi: 10.1007/s00245-018-9513-x.
    [26] T. Wang and J. Yong, Backward stochastic Volterra integral equations–representation of adapted solutions, Stochastic Process. Appl., 129 (2019), 4926-4964.  doi: 10.1016/j.spa.2018.12.016.
    [27] T. Wang and H. Zhang, Optimal control problems of forward-backward stochastic Volterra integral equations with closed control regions, SIAM J. Control Optim., 55 (2017), 2574-2602.  doi: 10.1137/16M1059801.
    [28] Q. WeiJ. Yong and Z. Yu, Time-inconsistent recursive stochastic optimal control problems, SIAM J. Control Optim., 55 (2017), 4156-4201.  doi: 10.1137/16M1079415.
    [29] W. Yan and J. Yong, Time-inconsistent optimal control problems and related issues, in Modeling, Stochastic Control, Optimization, and Applications, IMA Vol. Math. Appl., Springer, Cham, 2019,533–569. doi: 10.1007/978-3-030-25498-8_22.
    [30] J. Yong, Backward stochastic Volterra integral equations and some related problems, Stochastic Process. Appl., 116 (2006), 779-795.  doi: 10.1016/j.spa.2006.01.005.
    [31] J. Yong, Continuous-time dynamic risk measures by backward stochastic Volterra integral equations, Appl. Anal., 86 (2007), 1429-1442.  doi: 10.1080/00036810701697328.
    [32] J. Yong, Well-posedness and regularity of backward stochastic Volterra integral equations, Probab. Theory Related Fields, 142 (2008), 21-77.  doi: 10.1007/s00440-007-0098-6.
    [33] J. Yong, Time-inconsistent optimal control problems and the equilibrium HJB equation, Math. Control Relat. Fields, 2 (2012), 271-329.  doi: 10.3934/mcrf.2012.2.271.
    [34] J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations–time-consistent solutions, Trans. Amer. Math. Soc., 369 (2017), 5467-5523.  doi: 10.1090/tran/6502.
    [35] J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-1466-3.
    [36] J. Zhang, Backward Stochastic Differential Equations: From Linear to Fully Nonlinear Theory, Springer, New York, 2017. doi: 10.1007/978-1-4939-7256-2.
  • 加载中
SHARE

Article Metrics

HTML views(709) PDF downloads(329) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return