• Previous Article
    Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces
  • MCRF Home
  • This Issue
  • Next Article
    A stackelberg game of backward stochastic differential equations with partial information
December  2021, 11(4): 829-855. doi: 10.3934/mcrf.2020048

Stochastic maximum principle for problems with delay with dependence on the past through general measures

1. 

Dipartimento di Matematica, Politecnico di Milano, via Bonardi 9, 20133 Milano, Italia

2. 

Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via Cozzi 55, 20125 Milano, Italia

* Corresponding author: Federica Masiero

Received  February 2020 Revised  September 2020 Published  December 2021 Early access  November 2020

We prove a stochastic maximum principle for a control problem where the state equation is delayed both in the state and in the control, and both the running and the final cost functionals may depend on the past trajectories. The adjoint equation turns out to be a new form of linear anticipated backward stochastic differential equations (ABSDEs in the following), and we prove a direct formula to solve these equations.

Citation: Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control and Related Fields, 2021, 11 (4) : 829-855. doi: 10.3934/mcrf.2020048
References:
[1]

E. BandiniA. CossoM. Fuhrman and H. Pham, Backward SDEs for optimal control of partially observed path-dependent stochastic systems: A control randomization approach, Ann. Appl. Probab., 28 (2018), 1634-1678.  doi: 10.1214/17-AAP1340.

[2]

B. Bruder and H. Pham, Impulse control problem on finite horizon with execution delay, Stochastic Process. Appl., 119 (2009), 1436-1469.  doi: 10.1016/j.spa.2008.07.007.

[3]

R. BuckdahnH.-J. Engelbert and A. Răşcanu, On weak solutions of backward stochastic differential equations, Teor. Veroyatn. Primen., 49 (2004), 70-108.  doi: 10.4213/tvp237.

[4]

L. ChenZ. Wu and Z. Yu, Maximum principle for the stochastic optimal control problem with delay and application, Automatica J. IFAC, 46 (2010), 1074-1080.  doi: 10.1016/j.automatica.2010.03.005.

[5]

L. Chen and Z. Wu, Delayed stochastic linear-quadratic control problem and related applications, Journal of Applied Mathematics, 2012 (2012), 835319, 22 pp. doi: 10.1155/2012/835319.

[6]

Y. Eidelman, V. Milman and A. Tsolomitis, Functional Analysis, An Introduction, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2004. doi: 10.1090/gsm/066.

[7]

N. El KarouiS. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.  doi: 10.1111/1467-9965.00022.

[8]

G. Fabbri and S. Federico, On the infinite-dimensional representation of stochastic controlled systems with delayed control in the diffusion term, Mathematical Economics Letters, 2 (2014), 33-44.  doi: 10.1515/mel-2014-0011.

[9]

M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: The backward stochastic differential equations approach and applications to optimal control, Ann. Probab., 30 (2002), 1397-1465.  doi: 10.1214/aop/1029867132.

[10]

F. Gozzi and C. Marinelli, Stochastic optimal control of delay equations arising in advertising models, Stochastic partial differential equations and applications—VII, Lect. Notes Pure Appl. Math., Chapman & Hall/CRC, Boca Raton, FL, 245 (2006), 133–148.

[11]

F. GozziC. Marinelli and S. Savin, On controlled linear diffusions with delay in a model of optimal advertising under uncertainty with memory effects, J. Optim. Theory Appl., 142 (2009), 291-321.  doi: 10.1007/s10957-009-9524-5.

[12]

F. Gozzi and F. Masiero, Stochastic optimal control with delay in the control II:Verification theorem and optimal feedbacks, SIAM J. Control Optim., 55 (2017), 3013-3038.  doi: 10.1137/16M1073637.

[13]

L. Grosset and B. Viscolani, Advertising for a new product introduction: A stochastic approach, Top, 12 (2004), 149-167.  doi: 10.1007/BF02578929.

[14]

G. GuatteriF. Masiero and C. Orrieri, Stochastic maximum principle for SPDEs with delay, Stochastic Process. Appl., 127 (2017), 2396-2427.  doi: 10.1016/j.spa.2016.11.007.

[15]

R. F. Hartl, Optimal dynamic advertising policies for hereditary processes, J. Optim. Theory Appl., 43 (1984), 51-72.  doi: 10.1007/BF00934746.

[16]

Y. Hu and S. Peng, Maximum principle for semilinear stochastic evolution control systems, Stochastics Stochastics Rep., 33 (1990), 159-180.  doi: 10.1080/17442509008833671.

[17]

Y. Hu and S. Peng, Maximum principle for optimal control of stochastic system of functional type, Stochastic Anal. Appl., 14 (1996), 283-301.  doi: 10.1080/07362999608809440.

[18]

S.-E. A. Mohammed, Stochastic differential systems with memory: Theory, examples and applications. Stochastic analysis and related topics VI, Progr. Probab., Birkhäuser Boston, Boston, MA, 42 (1998), 1–77.

[19]

B. ØksendalA. Sulem and T. Zhang, Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations, Adv. in Appl. Probab., 43 (2011), 572-596.  doi: 10.1239/aap/1308662493.

[20]

C. Orrieri, E. Rocca and L. Scarpa, Optimal control of stochastic phase-field models related to tumor growth, ESAIM Control Optim. Calc. Var., forthcoming. doi: 10.1051/cocv/2020022.

[21]

E. Pardoux and A. Răşcanu, Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, Stochastic Modelling and Applied Probability, Springer, Cham, 2014. doi: 10.1007/978-3-319-05714-9.

[22]

S. Peng and Z. Yang, Anticipated backward stochastic differential equations, Ann. Probab., 37 (2009), 877-902.  doi: 10.1214/08-AOP423.

[23]

Z. Yang and R. J. Elliott, Some properties of generalized anticipated backward stochastic differential equations, Electron. Commun. Probab., 18 (2013), 10. doi: 10.1214/ECP.v18-2415.

[24]

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, New York, Springer-Verlag, 1999. doi: 10.1007/978-1-4612-1466-3.

show all references

References:
[1]

E. BandiniA. CossoM. Fuhrman and H. Pham, Backward SDEs for optimal control of partially observed path-dependent stochastic systems: A control randomization approach, Ann. Appl. Probab., 28 (2018), 1634-1678.  doi: 10.1214/17-AAP1340.

[2]

B. Bruder and H. Pham, Impulse control problem on finite horizon with execution delay, Stochastic Process. Appl., 119 (2009), 1436-1469.  doi: 10.1016/j.spa.2008.07.007.

[3]

R. BuckdahnH.-J. Engelbert and A. Răşcanu, On weak solutions of backward stochastic differential equations, Teor. Veroyatn. Primen., 49 (2004), 70-108.  doi: 10.4213/tvp237.

[4]

L. ChenZ. Wu and Z. Yu, Maximum principle for the stochastic optimal control problem with delay and application, Automatica J. IFAC, 46 (2010), 1074-1080.  doi: 10.1016/j.automatica.2010.03.005.

[5]

L. Chen and Z. Wu, Delayed stochastic linear-quadratic control problem and related applications, Journal of Applied Mathematics, 2012 (2012), 835319, 22 pp. doi: 10.1155/2012/835319.

[6]

Y. Eidelman, V. Milman and A. Tsolomitis, Functional Analysis, An Introduction, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2004. doi: 10.1090/gsm/066.

[7]

N. El KarouiS. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.  doi: 10.1111/1467-9965.00022.

[8]

G. Fabbri and S. Federico, On the infinite-dimensional representation of stochastic controlled systems with delayed control in the diffusion term, Mathematical Economics Letters, 2 (2014), 33-44.  doi: 10.1515/mel-2014-0011.

[9]

M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: The backward stochastic differential equations approach and applications to optimal control, Ann. Probab., 30 (2002), 1397-1465.  doi: 10.1214/aop/1029867132.

[10]

F. Gozzi and C. Marinelli, Stochastic optimal control of delay equations arising in advertising models, Stochastic partial differential equations and applications—VII, Lect. Notes Pure Appl. Math., Chapman & Hall/CRC, Boca Raton, FL, 245 (2006), 133–148.

[11]

F. GozziC. Marinelli and S. Savin, On controlled linear diffusions with delay in a model of optimal advertising under uncertainty with memory effects, J. Optim. Theory Appl., 142 (2009), 291-321.  doi: 10.1007/s10957-009-9524-5.

[12]

F. Gozzi and F. Masiero, Stochastic optimal control with delay in the control II:Verification theorem and optimal feedbacks, SIAM J. Control Optim., 55 (2017), 3013-3038.  doi: 10.1137/16M1073637.

[13]

L. Grosset and B. Viscolani, Advertising for a new product introduction: A stochastic approach, Top, 12 (2004), 149-167.  doi: 10.1007/BF02578929.

[14]

G. GuatteriF. Masiero and C. Orrieri, Stochastic maximum principle for SPDEs with delay, Stochastic Process. Appl., 127 (2017), 2396-2427.  doi: 10.1016/j.spa.2016.11.007.

[15]

R. F. Hartl, Optimal dynamic advertising policies for hereditary processes, J. Optim. Theory Appl., 43 (1984), 51-72.  doi: 10.1007/BF00934746.

[16]

Y. Hu and S. Peng, Maximum principle for semilinear stochastic evolution control systems, Stochastics Stochastics Rep., 33 (1990), 159-180.  doi: 10.1080/17442509008833671.

[17]

Y. Hu and S. Peng, Maximum principle for optimal control of stochastic system of functional type, Stochastic Anal. Appl., 14 (1996), 283-301.  doi: 10.1080/07362999608809440.

[18]

S.-E. A. Mohammed, Stochastic differential systems with memory: Theory, examples and applications. Stochastic analysis and related topics VI, Progr. Probab., Birkhäuser Boston, Boston, MA, 42 (1998), 1–77.

[19]

B. ØksendalA. Sulem and T. Zhang, Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations, Adv. in Appl. Probab., 43 (2011), 572-596.  doi: 10.1239/aap/1308662493.

[20]

C. Orrieri, E. Rocca and L. Scarpa, Optimal control of stochastic phase-field models related to tumor growth, ESAIM Control Optim. Calc. Var., forthcoming. doi: 10.1051/cocv/2020022.

[21]

E. Pardoux and A. Răşcanu, Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, Stochastic Modelling and Applied Probability, Springer, Cham, 2014. doi: 10.1007/978-3-319-05714-9.

[22]

S. Peng and Z. Yang, Anticipated backward stochastic differential equations, Ann. Probab., 37 (2009), 877-902.  doi: 10.1214/08-AOP423.

[23]

Z. Yang and R. J. Elliott, Some properties of generalized anticipated backward stochastic differential equations, Electron. Commun. Probab., 18 (2013), 10. doi: 10.1214/ECP.v18-2415.

[24]

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, New York, Springer-Verlag, 1999. doi: 10.1007/978-1-4612-1466-3.

[1]

Phuong Nguyen, Roger Temam. The stampacchia maximum principle for stochastic partial differential equations forced by lévy noise. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2289-2331. doi: 10.3934/cpaa.2020100

[2]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[3]

Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075

[4]

Jan A. Van Casteren. On backward stochastic differential equations in infinite dimensions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 803-824. doi: 10.3934/dcdss.2013.6.803

[5]

Joscha Diehl, Jianfeng Zhang. Backward stochastic differential equations with Young drift. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 5-. doi: 10.1186/s41546-017-0016-5

[6]

Adel Chala, Dahbia Hafayed. On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application. Evolution Equations and Control Theory, 2020, 9 (3) : 817-843. doi: 10.3934/eect.2020035

[7]

Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems and Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002

[8]

Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115

[9]

Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447

[10]

Mingshang Hu. Stochastic global maximum principle for optimization with recursive utilities. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 1-. doi: 10.1186/s41546-017-0014-7

[11]

Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial and Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27

[12]

Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533

[13]

Qi Zhang, Huaizhong Zhao. Backward doubly stochastic differential equations with polynomial growth coefficients. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5285-5315. doi: 10.3934/dcds.2015.35.5285

[14]

Yufeng Shi, Qingfeng Zhu. A Kneser-type theorem for backward doubly stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1565-1579. doi: 10.3934/dcdsb.2010.14.1565

[15]

Yanqing Wang. A semidiscrete Galerkin scheme for backward stochastic parabolic differential equations. Mathematical Control and Related Fields, 2016, 6 (3) : 489-515. doi: 10.3934/mcrf.2016013

[16]

Weidong Zhao, Jinlei Wang, Shige Peng. Error estimates of the $\theta$-scheme for backward stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 905-924. doi: 10.3934/dcdsb.2009.12.905

[17]

Weidong Zhao, Yang Li, Guannan Zhang. A generalized $\theta$-scheme for solving backward stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1585-1603. doi: 10.3934/dcdsb.2012.17.1585

[18]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control and Related Fields, 2021, 11 (4) : 797-828. doi: 10.3934/mcrf.2020047

[19]

Jiongmin Yong. Forward-backward stochastic differential equations: Initiation, development and beyond. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022011

[20]

Yinggu Chen, Said HamadÈne, Tingshu Mu. Mean-field doubly reflected backward stochastic differential equations. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022012

2021 Impact Factor: 1.141

Article outline

[Back to Top]