doi: 10.3934/mcrf.2020048

Stochastic maximum principle for problems with delay with dependence on the past through general measures

1. 

Dipartimento di Matematica, Politecnico di Milano, via Bonardi 9, 20133 Milano, Italia

2. 

Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via Cozzi 55, 20125 Milano, Italia

* Corresponding author: Federica Masiero

Received  February 2020 Revised  September 2020 Published  November 2020

We prove a stochastic maximum principle for a control problem where the state equation is delayed both in the state and in the control, and both the running and the final cost functionals may depend on the past trajectories. The adjoint equation turns out to be a new form of linear anticipated backward stochastic differential equations (ABSDEs in the following), and we prove a direct formula to solve these equations.

Citation: Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020048
References:
[1]

E. BandiniA. CossoM. Fuhrman and H. Pham, Backward SDEs for optimal control of partially observed path-dependent stochastic systems: A control randomization approach, Ann. Appl. Probab., 28 (2018), 1634-1678.  doi: 10.1214/17-AAP1340.  Google Scholar

[2]

B. Bruder and H. Pham, Impulse control problem on finite horizon with execution delay, Stochastic Process. Appl., 119 (2009), 1436-1469.  doi: 10.1016/j.spa.2008.07.007.  Google Scholar

[3]

R. BuckdahnH.-J. Engelbert and A. Răşcanu, On weak solutions of backward stochastic differential equations, Teor. Veroyatn. Primen., 49 (2004), 70-108.  doi: 10.4213/tvp237.  Google Scholar

[4]

L. ChenZ. Wu and Z. Yu, Maximum principle for the stochastic optimal control problem with delay and application, Automatica J. IFAC, 46 (2010), 1074-1080.  doi: 10.1016/j.automatica.2010.03.005.  Google Scholar

[5]

L. Chen and Z. Wu, Delayed stochastic linear-quadratic control problem and related applications, Journal of Applied Mathematics, 2012 (2012), 835319, 22 pp. doi: 10.1155/2012/835319.  Google Scholar

[6]

Y. Eidelman, V. Milman and A. Tsolomitis, Functional Analysis, An Introduction, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2004. doi: 10.1090/gsm/066.  Google Scholar

[7]

N. El KarouiS. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.  doi: 10.1111/1467-9965.00022.  Google Scholar

[8]

G. Fabbri and S. Federico, On the infinite-dimensional representation of stochastic controlled systems with delayed control in the diffusion term, Mathematical Economics Letters, 2 (2014), 33-44.  doi: 10.1515/mel-2014-0011.  Google Scholar

[9]

M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: The backward stochastic differential equations approach and applications to optimal control, Ann. Probab., 30 (2002), 1397-1465.  doi: 10.1214/aop/1029867132.  Google Scholar

[10]

F. Gozzi and C. Marinelli, Stochastic optimal control of delay equations arising in advertising models, Stochastic partial differential equations and applications—VII, Lect. Notes Pure Appl. Math., Chapman & Hall/CRC, Boca Raton, FL, 245 (2006), 133–148.  Google Scholar

[11]

F. GozziC. Marinelli and S. Savin, On controlled linear diffusions with delay in a model of optimal advertising under uncertainty with memory effects, J. Optim. Theory Appl., 142 (2009), 291-321.  doi: 10.1007/s10957-009-9524-5.  Google Scholar

[12]

F. Gozzi and F. Masiero, Stochastic optimal control with delay in the control II:Verification theorem and optimal feedbacks, SIAM J. Control Optim., 55 (2017), 3013-3038.  doi: 10.1137/16M1073637.  Google Scholar

[13]

L. Grosset and B. Viscolani, Advertising for a new product introduction: A stochastic approach, Top, 12 (2004), 149-167.  doi: 10.1007/BF02578929.  Google Scholar

[14]

G. GuatteriF. Masiero and C. Orrieri, Stochastic maximum principle for SPDEs with delay, Stochastic Process. Appl., 127 (2017), 2396-2427.  doi: 10.1016/j.spa.2016.11.007.  Google Scholar

[15]

R. F. Hartl, Optimal dynamic advertising policies for hereditary processes, J. Optim. Theory Appl., 43 (1984), 51-72.  doi: 10.1007/BF00934746.  Google Scholar

[16]

Y. Hu and S. Peng, Maximum principle for semilinear stochastic evolution control systems, Stochastics Stochastics Rep., 33 (1990), 159-180.  doi: 10.1080/17442509008833671.  Google Scholar

[17]

Y. Hu and S. Peng, Maximum principle for optimal control of stochastic system of functional type, Stochastic Anal. Appl., 14 (1996), 283-301.  doi: 10.1080/07362999608809440.  Google Scholar

[18]

S.-E. A. Mohammed, Stochastic differential systems with memory: Theory, examples and applications. Stochastic analysis and related topics VI, Progr. Probab., Birkhäuser Boston, Boston, MA, 42 (1998), 1–77.  Google Scholar

[19]

B. ØksendalA. Sulem and T. Zhang, Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations, Adv. in Appl. Probab., 43 (2011), 572-596.  doi: 10.1239/aap/1308662493.  Google Scholar

[20]

C. Orrieri, E. Rocca and L. Scarpa, Optimal control of stochastic phase-field models related to tumor growth, ESAIM Control Optim. Calc. Var., forthcoming. doi: 10.1051/cocv/2020022.  Google Scholar

[21]

E. Pardoux and A. Răşcanu, Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, Stochastic Modelling and Applied Probability, Springer, Cham, 2014. doi: 10.1007/978-3-319-05714-9.  Google Scholar

[22]

S. Peng and Z. Yang, Anticipated backward stochastic differential equations, Ann. Probab., 37 (2009), 877-902.  doi: 10.1214/08-AOP423.  Google Scholar

[23]

Z. Yang and R. J. Elliott, Some properties of generalized anticipated backward stochastic differential equations, Electron. Commun. Probab., 18 (2013), 10. doi: 10.1214/ECP.v18-2415.  Google Scholar

[24]

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, New York, Springer-Verlag, 1999. doi: 10.1007/978-1-4612-1466-3.  Google Scholar

show all references

References:
[1]

E. BandiniA. CossoM. Fuhrman and H. Pham, Backward SDEs for optimal control of partially observed path-dependent stochastic systems: A control randomization approach, Ann. Appl. Probab., 28 (2018), 1634-1678.  doi: 10.1214/17-AAP1340.  Google Scholar

[2]

B. Bruder and H. Pham, Impulse control problem on finite horizon with execution delay, Stochastic Process. Appl., 119 (2009), 1436-1469.  doi: 10.1016/j.spa.2008.07.007.  Google Scholar

[3]

R. BuckdahnH.-J. Engelbert and A. Răşcanu, On weak solutions of backward stochastic differential equations, Teor. Veroyatn. Primen., 49 (2004), 70-108.  doi: 10.4213/tvp237.  Google Scholar

[4]

L. ChenZ. Wu and Z. Yu, Maximum principle for the stochastic optimal control problem with delay and application, Automatica J. IFAC, 46 (2010), 1074-1080.  doi: 10.1016/j.automatica.2010.03.005.  Google Scholar

[5]

L. Chen and Z. Wu, Delayed stochastic linear-quadratic control problem and related applications, Journal of Applied Mathematics, 2012 (2012), 835319, 22 pp. doi: 10.1155/2012/835319.  Google Scholar

[6]

Y. Eidelman, V. Milman and A. Tsolomitis, Functional Analysis, An Introduction, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2004. doi: 10.1090/gsm/066.  Google Scholar

[7]

N. El KarouiS. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.  doi: 10.1111/1467-9965.00022.  Google Scholar

[8]

G. Fabbri and S. Federico, On the infinite-dimensional representation of stochastic controlled systems with delayed control in the diffusion term, Mathematical Economics Letters, 2 (2014), 33-44.  doi: 10.1515/mel-2014-0011.  Google Scholar

[9]

M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: The backward stochastic differential equations approach and applications to optimal control, Ann. Probab., 30 (2002), 1397-1465.  doi: 10.1214/aop/1029867132.  Google Scholar

[10]

F. Gozzi and C. Marinelli, Stochastic optimal control of delay equations arising in advertising models, Stochastic partial differential equations and applications—VII, Lect. Notes Pure Appl. Math., Chapman & Hall/CRC, Boca Raton, FL, 245 (2006), 133–148.  Google Scholar

[11]

F. GozziC. Marinelli and S. Savin, On controlled linear diffusions with delay in a model of optimal advertising under uncertainty with memory effects, J. Optim. Theory Appl., 142 (2009), 291-321.  doi: 10.1007/s10957-009-9524-5.  Google Scholar

[12]

F. Gozzi and F. Masiero, Stochastic optimal control with delay in the control II:Verification theorem and optimal feedbacks, SIAM J. Control Optim., 55 (2017), 3013-3038.  doi: 10.1137/16M1073637.  Google Scholar

[13]

L. Grosset and B. Viscolani, Advertising for a new product introduction: A stochastic approach, Top, 12 (2004), 149-167.  doi: 10.1007/BF02578929.  Google Scholar

[14]

G. GuatteriF. Masiero and C. Orrieri, Stochastic maximum principle for SPDEs with delay, Stochastic Process. Appl., 127 (2017), 2396-2427.  doi: 10.1016/j.spa.2016.11.007.  Google Scholar

[15]

R. F. Hartl, Optimal dynamic advertising policies for hereditary processes, J. Optim. Theory Appl., 43 (1984), 51-72.  doi: 10.1007/BF00934746.  Google Scholar

[16]

Y. Hu and S. Peng, Maximum principle for semilinear stochastic evolution control systems, Stochastics Stochastics Rep., 33 (1990), 159-180.  doi: 10.1080/17442509008833671.  Google Scholar

[17]

Y. Hu and S. Peng, Maximum principle for optimal control of stochastic system of functional type, Stochastic Anal. Appl., 14 (1996), 283-301.  doi: 10.1080/07362999608809440.  Google Scholar

[18]

S.-E. A. Mohammed, Stochastic differential systems with memory: Theory, examples and applications. Stochastic analysis and related topics VI, Progr. Probab., Birkhäuser Boston, Boston, MA, 42 (1998), 1–77.  Google Scholar

[19]

B. ØksendalA. Sulem and T. Zhang, Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations, Adv. in Appl. Probab., 43 (2011), 572-596.  doi: 10.1239/aap/1308662493.  Google Scholar

[20]

C. Orrieri, E. Rocca and L. Scarpa, Optimal control of stochastic phase-field models related to tumor growth, ESAIM Control Optim. Calc. Var., forthcoming. doi: 10.1051/cocv/2020022.  Google Scholar

[21]

E. Pardoux and A. Răşcanu, Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, Stochastic Modelling and Applied Probability, Springer, Cham, 2014. doi: 10.1007/978-3-319-05714-9.  Google Scholar

[22]

S. Peng and Z. Yang, Anticipated backward stochastic differential equations, Ann. Probab., 37 (2009), 877-902.  doi: 10.1214/08-AOP423.  Google Scholar

[23]

Z. Yang and R. J. Elliott, Some properties of generalized anticipated backward stochastic differential equations, Electron. Commun. Probab., 18 (2013), 10. doi: 10.1214/ECP.v18-2415.  Google Scholar

[24]

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, New York, Springer-Verlag, 1999. doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[1]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[2]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[3]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[4]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[5]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[6]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[7]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[8]

Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250

[9]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[10]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021025

[11]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[12]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[13]

Zheng Liu, Tianxiao Wang. A class of stochastic Fredholm-algebraic equations and applications in finance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3879-3903. doi: 10.3934/dcdsb.2020267

[14]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

[15]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[16]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[17]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2725-3737. doi: 10.3934/dcds.2020383

[18]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2829-2871. doi: 10.3934/dcds.2020388

[19]

Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021050

[20]

Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021009

2019 Impact Factor: 0.857

Article outline

[Back to Top]