
-
Previous Article
Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations
- MCRF Home
- This Issue
- Next Article
Optimal control of a non-smooth quasilinear elliptic equation
Faculty of Mathematics, University Duisburg-Essen, Thea-Leymann-Strasse 9, 45127 Essen, Germany |
This work is concerned with an optimal control problem governed by a non-smooth quasilinear elliptic equation with a nonlinear coefficient in the principal part that is locally Lipschitz continuous and directionally but not Gâteaux differentiable. This leads to a control-to-state operator that is directionally but not Gâteaux differentiable as well. Based on a suitable regularization scheme, we derive C- and strong stationarity conditions. Under the additional assumption that the nonlinearity is a $ PC^1 $ function with countably many points of nondifferentiability, we show that both conditions are equivalent. Furthermore, under this assumption we derive a relaxed optimality system that is amenable to numerical solution using a semi-smooth Newton method. This is illustrated by numerical examples.
References:
[1] |
R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Academic Press, New YorkLondon, 1975. |
[2] |
V. Barbu, Optimal Control of Variational Inequalities, vol. 100 of Research Notes in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1984. |
[3] |
A. Bejan, Convection Heat Transfer, 4th edition, J. Wiley & Sons, 2013.
doi: 10.1002/9781118671627. |
[4] |
A. Bensoussan and J. Frehse, Regularity Results for Nonlinear Elliptic Systems and Applications, Springer-Verlag, Berlin, Heidelberg, 2002.
doi: 10.1007/978-3-662-12905-0. |
[5] |
L. M. Betz,
Second-order sufficient optimality conditions for optimal control of non-smooth, semilinear parabolic equations, SIAM Journal on Control and Optimization, 57 (2019), 4033-4062.
doi: 10.1137/19M1239106. |
[6] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, Berlin, Heidelberg, 2000.
doi: 10.1007/978-1-4612-1394-9. |
[7] |
E. Casas and V. Dhamo,
Error estimates for the numerical approximation of a quasilinear Neumann problem under minimal regularity of the data, Numer. Math., 117 (2011), 115-145.
doi: 10.1007/s00211-010-0344-1. |
[8] |
E. Casas and V. Dhamo,
Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations, Comput. Optim. Appl., 52 (2012), 719-756.
doi: 10.1007/s10589-011-9440-0. |
[9] |
E. Casas and F. Tröltzsch,
First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations, SIAM J. Control Optim., 48 (2009), 688-718.
doi: 10.1137/080720048. |
[10] |
E. Casas and F. Tröltzsch,
Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations, ESAIM Control Optim. Calc. Var., 17 (2011), 771-800.
doi: 10.1051/cocv/2010025. |
[11] |
M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-9982-5. |
[12] |
C. Christof, C. Clason, C. Meyer and S. Walter,
Optimal control of a non-smooth semilinear elliptic equation, Mathematical Control and Related Fields, 8 (2018), 247-276.
doi: 10.3934/mcrf.2018011. |
[13] |
C. Clason and K. Kunisch,
A convex analysis approach to multi-material topology optimization, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), 1917-1936.
doi: 10.1051/m2an/2016012. |
[14] |
P. Fusek, D. Klatte and B. Kummer,
Examples and counterexamples in Lipschitz analysis, Control Cybernet., 31 (2002), 471-492.
|
[15] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, 2011. |
[16] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Pub, Program, 1985. |
[17] |
R. Herzog, C. Meyer and G. Wachsmuth,
B- and strong stationarity for optimal control of static plasticity with hardening, SIAM J. Optim., 23 (2013), 321-352.
doi: 10.1137/110821147. |
[18] |
K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications, Advances in Design and Control, SIAM, 2008.
doi: 10.1137/1.9780898718614. |
[19] |
A. Logg and G. N. Wells, DOLFIN: automated finite element computing, ACM Transactions on Mathematical Software, 37 (2010), Art. 20, 28pp.
doi: 10.1145/1731022.1731030. |
[20] |
A. Logg, G. N. Wells and J. Hake, DOLFIN: A C++/Python Finite Element Library, Springer, 2012. Google Scholar |
[21] |
C. Meyer and L. M. Susu,
Optimal control of nonsmooth, semilinear parabolic equations, SIAM J. Control Optim., 55 (2017), 2206-2234.
doi: 10.1137/15M1040426. |
[22] |
C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, Heidelberg, 2008.
doi: 10.1007/978-3-540-69952-1. |
[23] |
P. Neittaanmäki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems, Theory, Algorithms and Applications, Marcel Dekker, 1994. |
[24] |
S. Scholtes, Introduction to Piecewise Differentiable Equations, Springer Science & Business Media, 2012.
doi: 10.1007/978-1-4614-4340-7. |
[25] |
D. Tiba, Optimal Control of Nonsmooth Distributed Parameter Systems, Springer-Verlag, Berlin, Heidelberg, 1990.
doi: 10.1007/BFb0085564. |
[26] |
M. Ulbrich,
Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces, SIAM J. Optim., 13 (2002), 805-842.
doi: 10.1137/S1052623400371569. |
[27] |
A. Visintin, Models of Phase Transitions, Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4078-5. |
[28] |
E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.
doi: 10.1007/978-1-4612-0985-0. |
[29] |
Y. B. Zel'dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press. Google Scholar |
show all references
References:
[1] |
R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Academic Press, New YorkLondon, 1975. |
[2] |
V. Barbu, Optimal Control of Variational Inequalities, vol. 100 of Research Notes in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1984. |
[3] |
A. Bejan, Convection Heat Transfer, 4th edition, J. Wiley & Sons, 2013.
doi: 10.1002/9781118671627. |
[4] |
A. Bensoussan and J. Frehse, Regularity Results for Nonlinear Elliptic Systems and Applications, Springer-Verlag, Berlin, Heidelberg, 2002.
doi: 10.1007/978-3-662-12905-0. |
[5] |
L. M. Betz,
Second-order sufficient optimality conditions for optimal control of non-smooth, semilinear parabolic equations, SIAM Journal on Control and Optimization, 57 (2019), 4033-4062.
doi: 10.1137/19M1239106. |
[6] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, Berlin, Heidelberg, 2000.
doi: 10.1007/978-1-4612-1394-9. |
[7] |
E. Casas and V. Dhamo,
Error estimates for the numerical approximation of a quasilinear Neumann problem under minimal regularity of the data, Numer. Math., 117 (2011), 115-145.
doi: 10.1007/s00211-010-0344-1. |
[8] |
E. Casas and V. Dhamo,
Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations, Comput. Optim. Appl., 52 (2012), 719-756.
doi: 10.1007/s10589-011-9440-0. |
[9] |
E. Casas and F. Tröltzsch,
First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations, SIAM J. Control Optim., 48 (2009), 688-718.
doi: 10.1137/080720048. |
[10] |
E. Casas and F. Tröltzsch,
Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations, ESAIM Control Optim. Calc. Var., 17 (2011), 771-800.
doi: 10.1051/cocv/2010025. |
[11] |
M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-9982-5. |
[12] |
C. Christof, C. Clason, C. Meyer and S. Walter,
Optimal control of a non-smooth semilinear elliptic equation, Mathematical Control and Related Fields, 8 (2018), 247-276.
doi: 10.3934/mcrf.2018011. |
[13] |
C. Clason and K. Kunisch,
A convex analysis approach to multi-material topology optimization, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), 1917-1936.
doi: 10.1051/m2an/2016012. |
[14] |
P. Fusek, D. Klatte and B. Kummer,
Examples and counterexamples in Lipschitz analysis, Control Cybernet., 31 (2002), 471-492.
|
[15] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, 2011. |
[16] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Pub, Program, 1985. |
[17] |
R. Herzog, C. Meyer and G. Wachsmuth,
B- and strong stationarity for optimal control of static plasticity with hardening, SIAM J. Optim., 23 (2013), 321-352.
doi: 10.1137/110821147. |
[18] |
K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications, Advances in Design and Control, SIAM, 2008.
doi: 10.1137/1.9780898718614. |
[19] |
A. Logg and G. N. Wells, DOLFIN: automated finite element computing, ACM Transactions on Mathematical Software, 37 (2010), Art. 20, 28pp.
doi: 10.1145/1731022.1731030. |
[20] |
A. Logg, G. N. Wells and J. Hake, DOLFIN: A C++/Python Finite Element Library, Springer, 2012. Google Scholar |
[21] |
C. Meyer and L. M. Susu,
Optimal control of nonsmooth, semilinear parabolic equations, SIAM J. Control Optim., 55 (2017), 2206-2234.
doi: 10.1137/15M1040426. |
[22] |
C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, Heidelberg, 2008.
doi: 10.1007/978-3-540-69952-1. |
[23] |
P. Neittaanmäki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems, Theory, Algorithms and Applications, Marcel Dekker, 1994. |
[24] |
S. Scholtes, Introduction to Piecewise Differentiable Equations, Springer Science & Business Media, 2012.
doi: 10.1007/978-1-4614-4340-7. |
[25] |
D. Tiba, Optimal Control of Nonsmooth Distributed Parameter Systems, Springer-Verlag, Berlin, Heidelberg, 1990.
doi: 10.1007/BFb0085564. |
[26] |
M. Ulbrich,
Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces, SIAM J. Optim., 13 (2002), 805-842.
doi: 10.1137/S1052623400371569. |
[27] |
A. Visintin, Models of Phase Transitions, Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4078-5. |
[28] |
E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.
doi: 10.1007/978-1-4612-0985-0. |
[29] |
Y. B. Zel'dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press. Google Scholar |
$n_h$ | $\alpha$ | $\beta$ | $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ | $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ | #SSN | $\|y_d \|_{L^\infty(\Omega)} $ |
100 | 1·10−6 | 0.8 | 3.27·10−3 | 2.92·10−2 | 2 | 2.07·10−4 |
200 | 1·10−6 | 0.8 | 1.66·10−3 | 1.54·10−2 | 4 | 2.07·10−4 |
400 | 1·10−6 | 0.8 | 8.36·10−4 | 7.92·10−3 | 3 | 2.07·10−4 |
800 | 1·10−6 | 0.8 | 4.19·10−4 | 4.03·10−3 | 3 | 2.07·10−4 |
1000 | 1·10−6 | 0.8 | 3.36·10−4 | 3.24·10−3 | 3 | 2.07·10−4 |
(A) dependence on $n_h$ | ||||||
$n_h$ | $\alpha$ | $\beta$ | $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ | $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ | #SSN | $\|y_d \|_{L^\infty(\Omega)} $ |
800 | 1·10−2 | 0.8 | 6.36·10−2 | 1.36·10−2 | 4 | 9.83·10−2 |
800 | 1·10−4 | 0.8 | 8.76·10−3 | 7.32·10−3 | 3 | 9.83·10−2 |
800 | 1·10−6 | 0.8 | 4.19·10−4 | 4.03·10−3 | 3 | 2.07·10−4 |
800 | 1·10−8 | 0.8 | 2.32·10−5 | 2.19·10−3 | 25 | 2.03·10−4 |
(B) dependence on $\alpha$ | ||||||
$n_h$ | $\alpha$ | $\beta$ | $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ | $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ | #SSN | $\|y_d \|_{L^\infty(\Omega)} $ |
800 | 1·10−5 | 0.5 | 7.03·10−3 | 1.20·10−2 | 3 | 1.50·10−5 |
800 | 1·10−5 | 0.7 | 2.68·10−3 | 7.11·10−3 | 3 | 1.07·10−4 |
800 | 1·10−5 | 0.9 | 1.41·10−3 | 4.27·10−3 | 4 | 5.07·10−4 |
800 | 1·10−5 | 1.0 | 8.65·10−5 | 3.39·10−3 | 6 | 9.50·10−4 |
(C) dependence on $\beta$ |
$n_h$ | $\alpha$ | $\beta$ | $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ | $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ | #SSN | $\|y_d \|_{L^\infty(\Omega)} $ |
100 | 1·10−6 | 0.8 | 3.27·10−3 | 2.92·10−2 | 2 | 2.07·10−4 |
200 | 1·10−6 | 0.8 | 1.66·10−3 | 1.54·10−2 | 4 | 2.07·10−4 |
400 | 1·10−6 | 0.8 | 8.36·10−4 | 7.92·10−3 | 3 | 2.07·10−4 |
800 | 1·10−6 | 0.8 | 4.19·10−4 | 4.03·10−3 | 3 | 2.07·10−4 |
1000 | 1·10−6 | 0.8 | 3.36·10−4 | 3.24·10−3 | 3 | 2.07·10−4 |
(A) dependence on $n_h$ | ||||||
$n_h$ | $\alpha$ | $\beta$ | $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ | $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ | #SSN | $\|y_d \|_{L^\infty(\Omega)} $ |
800 | 1·10−2 | 0.8 | 6.36·10−2 | 1.36·10−2 | 4 | 9.83·10−2 |
800 | 1·10−4 | 0.8 | 8.76·10−3 | 7.32·10−3 | 3 | 9.83·10−2 |
800 | 1·10−6 | 0.8 | 4.19·10−4 | 4.03·10−3 | 3 | 2.07·10−4 |
800 | 1·10−8 | 0.8 | 2.32·10−5 | 2.19·10−3 | 25 | 2.03·10−4 |
(B) dependence on $\alpha$ | ||||||
$n_h$ | $\alpha$ | $\beta$ | $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ | $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ | #SSN | $\|y_d \|_{L^\infty(\Omega)} $ |
800 | 1·10−5 | 0.5 | 7.03·10−3 | 1.20·10−2 | 3 | 1.50·10−5 |
800 | 1·10−5 | 0.7 | 2.68·10−3 | 7.11·10−3 | 3 | 1.07·10−4 |
800 | 1·10−5 | 0.9 | 1.41·10−3 | 4.27·10−3 | 4 | 5.07·10−4 |
800 | 1·10−5 | 1.0 | 8.65·10−5 | 3.39·10−3 | 6 | 9.50·10−4 |
(C) dependence on $\beta$ |
[1] |
Constantin Christof, Christian Meyer, Stephan Walther, Christian Clason. Optimal control of a non-smooth semilinear elliptic equation. Mathematical Control & Related Fields, 2018, 8 (1) : 247-276. doi: 10.3934/mcrf.2018011 |
[2] |
Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control & Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289 |
[3] |
Nurullah Yilmaz, Ahmet Sahiner. On a new smoothing technique for non-smooth, non-convex optimization. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 317-330. doi: 10.3934/naco.2020004 |
[4] |
Mikhail I. Belishev, Aleksei F. Vakulenko. Non-smooth unobservable states in control problem for the wave equation in $\mathbb{R}^3$. Evolution Equations & Control Theory, 2014, 3 (2) : 247-256. doi: 10.3934/eect.2014.3.247 |
[5] |
Giuseppe Tomassetti. Smooth and non-smooth regularizations of the nonlinear diffusion equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1519-1537. doi: 10.3934/dcdss.2017078 |
[6] |
Paul Glendinning. Non-smooth pitchfork bifurcations. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 457-464. doi: 10.3934/dcdsb.2004.4.457 |
[7] |
Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001 |
[8] |
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 |
[9] |
Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations & Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016 |
[10] |
Xiaoshan Chen, Xun Li, Fahuai Yi. Optimal stopping investment with non-smooth utility over an infinite time horizon. Journal of Industrial & Management Optimization, 2019, 15 (1) : 81-96. doi: 10.3934/jimo.2018033 |
[11] |
Luis Bayón, Jose Maria Grau, Maria del Mar Ruiz, Pedro Maria Suárez. A hydrothermal problem with non-smooth Lagrangian. Journal of Industrial & Management Optimization, 2014, 10 (3) : 761-776. doi: 10.3934/jimo.2014.10.761 |
[12] |
Chao Zhang, Lihe Wang, Shulin Zhou, Yun-Ho Kim. Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2559-2587. doi: 10.3934/cpaa.2014.13.2559 |
[13] |
Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021073 |
[14] |
Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155 |
[15] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[16] |
Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011 |
[17] |
Nicola Gigli, Sunra Mosconi. The Abresch-Gromoll inequality in a non-smooth setting. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1481-1509. doi: 10.3934/dcds.2014.34.1481 |
[18] |
Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445-461. doi: 10.3934/mbe.2013.10.445 |
[19] |
Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 647-665. doi: 10.3934/jimo.2018063 |
[20] |
Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]