# American Institute of Mathematical Sciences

doi: 10.3934/mcrf.2020052

## Optimal control of a non-smooth quasilinear elliptic equation

 Faculty of Mathematics, University Duisburg-Essen, Thea-Leymann-Strasse 9, 45127 Essen, Germany

* Corresponding author: Christian Clason.

Received  October 2018 Revised  December 2018 Published  December 2020

Fund Project: This work was supported by the DFG under the grants CL 487/2-1 and RO 2462/6-1, both within the priority programme SPP 1962 "Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization".

This work is concerned with an optimal control problem governed by a non-smooth quasilinear elliptic equation with a nonlinear coefficient in the principal part that is locally Lipschitz continuous and directionally but not Gâteaux differentiable. This leads to a control-to-state operator that is directionally but not Gâteaux differentiable as well. Based on a suitable regularization scheme, we derive C- and strong stationarity conditions. Under the additional assumption that the nonlinearity is a $PC^1$ function with countably many points of nondifferentiability, we show that both conditions are equivalent. Furthermore, under this assumption we derive a relaxed optimality system that is amenable to numerical solution using a semi-smooth Newton method. This is illustrated by numerical examples.

Citation: Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020052
##### References:

show all references

##### References:
constructed exact solution for $\alpha = 10^{-7}$, $\beta = 0.85$
numerical results. number of Newton iterations and relative errors for state $\bar y$ and adjoint $\bar w$ in dependence of $n_h$, $\alpha$, and $\beta$
 $n_h$ $\alpha$ $\beta$ $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ #SSN $\|y_d \|_{L^\infty(\Omega)}$ 100 1·10−6 0.8 3.27·10−3 2.92·10−2 2 2.07·10−4 200 1·10−6 0.8 1.66·10−3 1.54·10−2 4 2.07·10−4 400 1·10−6 0.8 8.36·10−4 7.92·10−3 3 2.07·10−4 800 1·10−6 0.8 4.19·10−4 4.03·10−3 3 2.07·10−4 1000 1·10−6 0.8 3.36·10−4 3.24·10−3 3 2.07·10−4 (A) dependence on $n_h$ $n_h$ $\alpha$ $\beta$ $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ #SSN $\|y_d \|_{L^\infty(\Omega)}$ 800 1·10−2 0.8 6.36·10−2 1.36·10−2 4 9.83·10−2 800 1·10−4 0.8 8.76·10−3 7.32·10−3 3 9.83·10−2 800 1·10−6 0.8 4.19·10−4 4.03·10−3 3 2.07·10−4 800 1·10−8 0.8 2.32·10−5 2.19·10−3 25 2.03·10−4 (B) dependence on $\alpha$ $n_h$ $\alpha$ $\beta$ $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ #SSN $\|y_d \|_{L^\infty(\Omega)}$ 800 1·10−5 0.5 7.03·10−3 1.20·10−2 3 1.50·10−5 800 1·10−5 0.7 2.68·10−3 7.11·10−3 3 1.07·10−4 800 1·10−5 0.9 1.41·10−3 4.27·10−3 4 5.07·10−4 800 1·10−5 1.0 8.65·10−5 3.39·10−3 6 9.50·10−4 (C) dependence on $\beta$
 $n_h$ $\alpha$ $\beta$ $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ #SSN $\|y_d \|_{L^\infty(\Omega)}$ 100 1·10−6 0.8 3.27·10−3 2.92·10−2 2 2.07·10−4 200 1·10−6 0.8 1.66·10−3 1.54·10−2 4 2.07·10−4 400 1·10−6 0.8 8.36·10−4 7.92·10−3 3 2.07·10−4 800 1·10−6 0.8 4.19·10−4 4.03·10−3 3 2.07·10−4 1000 1·10−6 0.8 3.36·10−4 3.24·10−3 3 2.07·10−4 (A) dependence on $n_h$ $n_h$ $\alpha$ $\beta$ $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ #SSN $\|y_d \|_{L^\infty(\Omega)}$ 800 1·10−2 0.8 6.36·10−2 1.36·10−2 4 9.83·10−2 800 1·10−4 0.8 8.76·10−3 7.32·10−3 3 9.83·10−2 800 1·10−6 0.8 4.19·10−4 4.03·10−3 3 2.07·10−4 800 1·10−8 0.8 2.32·10−5 2.19·10−3 25 2.03·10−4 (B) dependence on $\alpha$ $n_h$ $\alpha$ $\beta$ $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ #SSN $\|y_d \|_{L^\infty(\Omega)}$ 800 1·10−5 0.5 7.03·10−3 1.20·10−2 3 1.50·10−5 800 1·10−5 0.7 2.68·10−3 7.11·10−3 3 1.07·10−4 800 1·10−5 0.9 1.41·10−3 4.27·10−3 4 5.07·10−4 800 1·10−5 1.0 8.65·10−5 3.39·10−3 6 9.50·10−4 (C) dependence on $\beta$
 [1] Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073 [2] Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009 [3] Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 [4] Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 [5] Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014 [6] Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013 [7] Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032 [8] Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021043 [9] Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014 [10] Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074 [11] Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012 [12] Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 [13] Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008 [14] Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 [15] Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 [16] Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 [17] Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007 [18] Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215 [19] Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064 [20] Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

2019 Impact Factor: 0.857

## Tools

Article outline

Figures and Tables