# American Institute of Mathematical Sciences

doi: 10.3934/mcrf.2020052

## Optimal control of a non-smooth quasilinear elliptic equation

 Faculty of Mathematics, University Duisburg-Essen, Thea-Leymann-Strasse 9, 45127 Essen, Germany

* Corresponding author: Christian Clason.

Received  October 2018 Revised  December 2018 Published  December 2020

Fund Project: This work was supported by the DFG under the grants CL 487/2-1 and RO 2462/6-1, both within the priority programme SPP 1962 "Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization".

This work is concerned with an optimal control problem governed by a non-smooth quasilinear elliptic equation with a nonlinear coefficient in the principal part that is locally Lipschitz continuous and directionally but not Gâteaux differentiable. This leads to a control-to-state operator that is directionally but not Gâteaux differentiable as well. Based on a suitable regularization scheme, we derive C- and strong stationarity conditions. Under the additional assumption that the nonlinearity is a $PC^1$ function with countably many points of nondifferentiability, we show that both conditions are equivalent. Furthermore, under this assumption we derive a relaxed optimality system that is amenable to numerical solution using a semi-smooth Newton method. This is illustrated by numerical examples.

Citation: Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020052
##### References:

show all references

##### References:
constructed exact solution for $\alpha = 10^{-7}$, $\beta = 0.85$
numerical results. number of Newton iterations and relative errors for state $\bar y$ and adjoint $\bar w$ in dependence of $n_h$, $\alpha$, and $\beta$
 $n_h$ $\alpha$ $\beta$ $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ #SSN $\|y_d \|_{L^\infty(\Omega)}$ 100 1·10−6 0.8 3.27·10−3 2.92·10−2 2 2.07·10−4 200 1·10−6 0.8 1.66·10−3 1.54·10−2 4 2.07·10−4 400 1·10−6 0.8 8.36·10−4 7.92·10−3 3 2.07·10−4 800 1·10−6 0.8 4.19·10−4 4.03·10−3 3 2.07·10−4 1000 1·10−6 0.8 3.36·10−4 3.24·10−3 3 2.07·10−4 (A) dependence on $n_h$ $n_h$ $\alpha$ $\beta$ $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ #SSN $\|y_d \|_{L^\infty(\Omega)}$ 800 1·10−2 0.8 6.36·10−2 1.36·10−2 4 9.83·10−2 800 1·10−4 0.8 8.76·10−3 7.32·10−3 3 9.83·10−2 800 1·10−6 0.8 4.19·10−4 4.03·10−3 3 2.07·10−4 800 1·10−8 0.8 2.32·10−5 2.19·10−3 25 2.03·10−4 (B) dependence on $\alpha$ $n_h$ $\alpha$ $\beta$ $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ #SSN $\|y_d \|_{L^\infty(\Omega)}$ 800 1·10−5 0.5 7.03·10−3 1.20·10−2 3 1.50·10−5 800 1·10−5 0.7 2.68·10−3 7.11·10−3 3 1.07·10−4 800 1·10−5 0.9 1.41·10−3 4.27·10−3 4 5.07·10−4 800 1·10−5 1.0 8.65·10−5 3.39·10−3 6 9.50·10−4 (C) dependence on $\beta$
 $n_h$ $\alpha$ $\beta$ $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ #SSN $\|y_d \|_{L^\infty(\Omega)}$ 100 1·10−6 0.8 3.27·10−3 2.92·10−2 2 2.07·10−4 200 1·10−6 0.8 1.66·10−3 1.54·10−2 4 2.07·10−4 400 1·10−6 0.8 8.36·10−4 7.92·10−3 3 2.07·10−4 800 1·10−6 0.8 4.19·10−4 4.03·10−3 3 2.07·10−4 1000 1·10−6 0.8 3.36·10−4 3.24·10−3 3 2.07·10−4 (A) dependence on $n_h$ $n_h$ $\alpha$ $\beta$ $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ #SSN $\|y_d \|_{L^\infty(\Omega)}$ 800 1·10−2 0.8 6.36·10−2 1.36·10−2 4 9.83·10−2 800 1·10−4 0.8 8.76·10−3 7.32·10−3 3 9.83·10−2 800 1·10−6 0.8 4.19·10−4 4.03·10−3 3 2.07·10−4 800 1·10−8 0.8 2.32·10−5 2.19·10−3 25 2.03·10−4 (B) dependence on $\alpha$ $n_h$ $\alpha$ $\beta$ $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ #SSN $\|y_d \|_{L^\infty(\Omega)}$ 800 1·10−5 0.5 7.03·10−3 1.20·10−2 3 1.50·10−5 800 1·10−5 0.7 2.68·10−3 7.11·10−3 3 1.07·10−4 800 1·10−5 0.9 1.41·10−3 4.27·10−3 4 5.07·10−4 800 1·10−5 1.0 8.65·10−5 3.39·10−3 6 9.50·10−4 (C) dependence on $\beta$
 [1] Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 [2] Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 [3] Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 [4] Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 [5] Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107 [6] Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $L^2-$norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 [7] Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 [8] Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 [9] Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032 [10] Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045 [11] Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 [12] Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448 [13] Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454 [14] Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046 [15] Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 [16] Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144 [17] Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003 [18] Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 [19] Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 [20] Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

2019 Impact Factor: 0.857

## Tools

Article outline

Figures and Tables