
-
Previous Article
General stability of abstract thermoelastic system with infinite memory and delay
- MCRF Home
- This Issue
- Next Article
Optimal control of a non-smooth quasilinear elliptic equation
Faculty of Mathematics, University Duisburg-Essen, Thea-Leymann-Strasse 9, 45127 Essen, Germany |
This work is concerned with an optimal control problem governed by a non-smooth quasilinear elliptic equation with a nonlinear coefficient in the principal part that is locally Lipschitz continuous and directionally but not Gâteaux differentiable. This leads to a control-to-state operator that is directionally but not Gâteaux differentiable as well. Based on a suitable regularization scheme, we derive C- and strong stationarity conditions. Under the additional assumption that the nonlinearity is a $ PC^1 $ function with countably many points of nondifferentiability, we show that both conditions are equivalent. Furthermore, under this assumption we derive a relaxed optimality system that is amenable to numerical solution using a semi-smooth Newton method. This is illustrated by numerical examples.
References:
[1] |
R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Academic Press, New YorkLondon, 1975. |
[2] |
V. Barbu, Optimal Control of Variational Inequalities, vol. 100 of Research Notes in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1984. |
[3] |
A. Bejan, Convection Heat Transfer, 4th edition, J. Wiley & Sons, 2013.
doi: 10.1002/9781118671627. |
[4] |
A. Bensoussan and J. Frehse, Regularity Results for Nonlinear Elliptic Systems and Applications, Springer-Verlag, Berlin, Heidelberg, 2002.
doi: 10.1007/978-3-662-12905-0. |
[5] |
L. M. Betz,
Second-order sufficient optimality conditions for optimal control of non-smooth, semilinear parabolic equations, SIAM Journal on Control and Optimization, 57 (2019), 4033-4062.
doi: 10.1137/19M1239106. |
[6] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, Berlin, Heidelberg, 2000.
doi: 10.1007/978-1-4612-1394-9. |
[7] |
E. Casas and V. Dhamo,
Error estimates for the numerical approximation of a quasilinear Neumann problem under minimal regularity of the data, Numer. Math., 117 (2011), 115-145.
doi: 10.1007/s00211-010-0344-1. |
[8] |
E. Casas and V. Dhamo,
Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations, Comput. Optim. Appl., 52 (2012), 719-756.
doi: 10.1007/s10589-011-9440-0. |
[9] |
E. Casas and F. Tröltzsch,
First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations, SIAM J. Control Optim., 48 (2009), 688-718.
doi: 10.1137/080720048. |
[10] |
E. Casas and F. Tröltzsch,
Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations, ESAIM Control Optim. Calc. Var., 17 (2011), 771-800.
doi: 10.1051/cocv/2010025. |
[11] |
M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-9982-5. |
[12] |
C. Christof, C. Clason, C. Meyer and S. Walter,
Optimal control of a non-smooth semilinear elliptic equation, Mathematical Control and Related Fields, 8 (2018), 247-276.
doi: 10.3934/mcrf.2018011. |
[13] |
C. Clason and K. Kunisch,
A convex analysis approach to multi-material topology optimization, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), 1917-1936.
doi: 10.1051/m2an/2016012. |
[14] |
P. Fusek, D. Klatte and B. Kummer,
Examples and counterexamples in Lipschitz analysis, Control Cybernet., 31 (2002), 471-492.
|
[15] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, 2011. |
[16] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Pub, Program, 1985. |
[17] |
R. Herzog, C. Meyer and G. Wachsmuth,
B- and strong stationarity for optimal control of static plasticity with hardening, SIAM J. Optim., 23 (2013), 321-352.
doi: 10.1137/110821147. |
[18] |
K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications, Advances in Design and Control, SIAM, 2008.
doi: 10.1137/1.9780898718614. |
[19] |
A. Logg and G. N. Wells, DOLFIN: automated finite element computing, ACM Transactions on Mathematical Software, 37 (2010), Art. 20, 28pp.
doi: 10.1145/1731022.1731030. |
[20] |
A. Logg, G. N. Wells and J. Hake, DOLFIN: A C++/Python Finite Element Library, Springer, 2012. Google Scholar |
[21] |
C. Meyer and L. M. Susu,
Optimal control of nonsmooth, semilinear parabolic equations, SIAM J. Control Optim., 55 (2017), 2206-2234.
doi: 10.1137/15M1040426. |
[22] |
C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, Heidelberg, 2008.
doi: 10.1007/978-3-540-69952-1. |
[23] |
P. Neittaanmäki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems, Theory, Algorithms and Applications, Marcel Dekker, 1994. |
[24] |
S. Scholtes, Introduction to Piecewise Differentiable Equations, Springer Science & Business Media, 2012.
doi: 10.1007/978-1-4614-4340-7. |
[25] |
D. Tiba, Optimal Control of Nonsmooth Distributed Parameter Systems, Springer-Verlag, Berlin, Heidelberg, 1990.
doi: 10.1007/BFb0085564. |
[26] |
M. Ulbrich,
Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces, SIAM J. Optim., 13 (2002), 805-842.
doi: 10.1137/S1052623400371569. |
[27] |
A. Visintin, Models of Phase Transitions, Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4078-5. |
[28] |
E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.
doi: 10.1007/978-1-4612-0985-0. |
[29] |
Y. B. Zel'dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press. Google Scholar |
show all references
References:
[1] |
R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Academic Press, New YorkLondon, 1975. |
[2] |
V. Barbu, Optimal Control of Variational Inequalities, vol. 100 of Research Notes in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1984. |
[3] |
A. Bejan, Convection Heat Transfer, 4th edition, J. Wiley & Sons, 2013.
doi: 10.1002/9781118671627. |
[4] |
A. Bensoussan and J. Frehse, Regularity Results for Nonlinear Elliptic Systems and Applications, Springer-Verlag, Berlin, Heidelberg, 2002.
doi: 10.1007/978-3-662-12905-0. |
[5] |
L. M. Betz,
Second-order sufficient optimality conditions for optimal control of non-smooth, semilinear parabolic equations, SIAM Journal on Control and Optimization, 57 (2019), 4033-4062.
doi: 10.1137/19M1239106. |
[6] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, Berlin, Heidelberg, 2000.
doi: 10.1007/978-1-4612-1394-9. |
[7] |
E. Casas and V. Dhamo,
Error estimates for the numerical approximation of a quasilinear Neumann problem under minimal regularity of the data, Numer. Math., 117 (2011), 115-145.
doi: 10.1007/s00211-010-0344-1. |
[8] |
E. Casas and V. Dhamo,
Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations, Comput. Optim. Appl., 52 (2012), 719-756.
doi: 10.1007/s10589-011-9440-0. |
[9] |
E. Casas and F. Tröltzsch,
First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations, SIAM J. Control Optim., 48 (2009), 688-718.
doi: 10.1137/080720048. |
[10] |
E. Casas and F. Tröltzsch,
Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations, ESAIM Control Optim. Calc. Var., 17 (2011), 771-800.
doi: 10.1051/cocv/2010025. |
[11] |
M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-9982-5. |
[12] |
C. Christof, C. Clason, C. Meyer and S. Walter,
Optimal control of a non-smooth semilinear elliptic equation, Mathematical Control and Related Fields, 8 (2018), 247-276.
doi: 10.3934/mcrf.2018011. |
[13] |
C. Clason and K. Kunisch,
A convex analysis approach to multi-material topology optimization, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), 1917-1936.
doi: 10.1051/m2an/2016012. |
[14] |
P. Fusek, D. Klatte and B. Kummer,
Examples and counterexamples in Lipschitz analysis, Control Cybernet., 31 (2002), 471-492.
|
[15] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, 2011. |
[16] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Pub, Program, 1985. |
[17] |
R. Herzog, C. Meyer and G. Wachsmuth,
B- and strong stationarity for optimal control of static plasticity with hardening, SIAM J. Optim., 23 (2013), 321-352.
doi: 10.1137/110821147. |
[18] |
K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications, Advances in Design and Control, SIAM, 2008.
doi: 10.1137/1.9780898718614. |
[19] |
A. Logg and G. N. Wells, DOLFIN: automated finite element computing, ACM Transactions on Mathematical Software, 37 (2010), Art. 20, 28pp.
doi: 10.1145/1731022.1731030. |
[20] |
A. Logg, G. N. Wells and J. Hake, DOLFIN: A C++/Python Finite Element Library, Springer, 2012. Google Scholar |
[21] |
C. Meyer and L. M. Susu,
Optimal control of nonsmooth, semilinear parabolic equations, SIAM J. Control Optim., 55 (2017), 2206-2234.
doi: 10.1137/15M1040426. |
[22] |
C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, Heidelberg, 2008.
doi: 10.1007/978-3-540-69952-1. |
[23] |
P. Neittaanmäki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems, Theory, Algorithms and Applications, Marcel Dekker, 1994. |
[24] |
S. Scholtes, Introduction to Piecewise Differentiable Equations, Springer Science & Business Media, 2012.
doi: 10.1007/978-1-4614-4340-7. |
[25] |
D. Tiba, Optimal Control of Nonsmooth Distributed Parameter Systems, Springer-Verlag, Berlin, Heidelberg, 1990.
doi: 10.1007/BFb0085564. |
[26] |
M. Ulbrich,
Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces, SIAM J. Optim., 13 (2002), 805-842.
doi: 10.1137/S1052623400371569. |
[27] |
A. Visintin, Models of Phase Transitions, Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4078-5. |
[28] |
E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.
doi: 10.1007/978-1-4612-0985-0. |
[29] |
Y. B. Zel'dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press. Google Scholar |
$n_h$ | $\alpha$ | $\beta$ | $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ | $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ | #SSN | $\|y_d \|_{L^\infty(\Omega)} $ |
100 | 1·10−6 | 0.8 | 3.27·10−3 | 2.92·10−2 | 2 | 2.07·10−4 |
200 | 1·10−6 | 0.8 | 1.66·10−3 | 1.54·10−2 | 4 | 2.07·10−4 |
400 | 1·10−6 | 0.8 | 8.36·10−4 | 7.92·10−3 | 3 | 2.07·10−4 |
800 | 1·10−6 | 0.8 | 4.19·10−4 | 4.03·10−3 | 3 | 2.07·10−4 |
1000 | 1·10−6 | 0.8 | 3.36·10−4 | 3.24·10−3 | 3 | 2.07·10−4 |
(A) dependence on $n_h$ | ||||||
$n_h$ | $\alpha$ | $\beta$ | $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ | $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ | #SSN | $\|y_d \|_{L^\infty(\Omega)} $ |
800 | 1·10−2 | 0.8 | 6.36·10−2 | 1.36·10−2 | 4 | 9.83·10−2 |
800 | 1·10−4 | 0.8 | 8.76·10−3 | 7.32·10−3 | 3 | 9.83·10−2 |
800 | 1·10−6 | 0.8 | 4.19·10−4 | 4.03·10−3 | 3 | 2.07·10−4 |
800 | 1·10−8 | 0.8 | 2.32·10−5 | 2.19·10−3 | 25 | 2.03·10−4 |
(B) dependence on $\alpha$ | ||||||
$n_h$ | $\alpha$ | $\beta$ | $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ | $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ | #SSN | $\|y_d \|_{L^\infty(\Omega)} $ |
800 | 1·10−5 | 0.5 | 7.03·10−3 | 1.20·10−2 | 3 | 1.50·10−5 |
800 | 1·10−5 | 0.7 | 2.68·10−3 | 7.11·10−3 | 3 | 1.07·10−4 |
800 | 1·10−5 | 0.9 | 1.41·10−3 | 4.27·10−3 | 4 | 5.07·10−4 |
800 | 1·10−5 | 1.0 | 8.65·10−5 | 3.39·10−3 | 6 | 9.50·10−4 |
(C) dependence on $\beta$ |
$n_h$ | $\alpha$ | $\beta$ | $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ | $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ | #SSN | $\|y_d \|_{L^\infty(\Omega)} $ |
100 | 1·10−6 | 0.8 | 3.27·10−3 | 2.92·10−2 | 2 | 2.07·10−4 |
200 | 1·10−6 | 0.8 | 1.66·10−3 | 1.54·10−2 | 4 | 2.07·10−4 |
400 | 1·10−6 | 0.8 | 8.36·10−4 | 7.92·10−3 | 3 | 2.07·10−4 |
800 | 1·10−6 | 0.8 | 4.19·10−4 | 4.03·10−3 | 3 | 2.07·10−4 |
1000 | 1·10−6 | 0.8 | 3.36·10−4 | 3.24·10−3 | 3 | 2.07·10−4 |
(A) dependence on $n_h$ | ||||||
$n_h$ | $\alpha$ | $\beta$ | $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ | $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ | #SSN | $\|y_d \|_{L^\infty(\Omega)} $ |
800 | 1·10−2 | 0.8 | 6.36·10−2 | 1.36·10−2 | 4 | 9.83·10−2 |
800 | 1·10−4 | 0.8 | 8.76·10−3 | 7.32·10−3 | 3 | 9.83·10−2 |
800 | 1·10−6 | 0.8 | 4.19·10−4 | 4.03·10−3 | 3 | 2.07·10−4 |
800 | 1·10−8 | 0.8 | 2.32·10−5 | 2.19·10−3 | 25 | 2.03·10−4 |
(B) dependence on $\alpha$ | ||||||
$n_h$ | $\alpha$ | $\beta$ | $\frac{\| y_h - \bar y\|_{H^1_0(\Omega)}}{\|\bar y\|_{H^1_0(\Omega)}}$ | $\frac{\| w_h - \bar w\|_{H^1_0(\Omega)}}{\|\bar w\|_{H^1_0(\Omega)}}$ | #SSN | $\|y_d \|_{L^\infty(\Omega)} $ |
800 | 1·10−5 | 0.5 | 7.03·10−3 | 1.20·10−2 | 3 | 1.50·10−5 |
800 | 1·10−5 | 0.7 | 2.68·10−3 | 7.11·10−3 | 3 | 1.07·10−4 |
800 | 1·10−5 | 0.9 | 1.41·10−3 | 4.27·10−3 | 4 | 5.07·10−4 |
800 | 1·10−5 | 1.0 | 8.65·10−5 | 3.39·10−3 | 6 | 9.50·10−4 |
(C) dependence on $\beta$ |
[1] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[2] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[3] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[4] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[5] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[6] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[7] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[8] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[9] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020032 |
[10] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 |
[11] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[12] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[13] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[14] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[15] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[16] |
Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144 |
[17] |
Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021003 |
[18] |
Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 |
[19] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[20] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
2019 Impact Factor: 0.857
Tools
Article outline
Figures and Tables
[Back to Top]