doi: 10.3934/mcrf.2020055
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Exact noise cancellation for 1d-acoustic propagation systems

1. 

Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France

2. 

IMT-Atlantique, LS2N UMR CNRS 6004, (Laboratoire des Sciences du Numérique de Nantes), F-44307 Nantes, France

* Corresponding author

Received  March 2020 Revised  August 2020 Early access December 2020

This paper deals with active noise control applied to a one-dimensional acoustic propagation system. The aim here is to keep over time a zero noise level at a given point. We aim to design this control using noise measurement at some point in the spatial domain. Based on symmetry property, we are able to design a feedback boundary control allowing this fact. Moreover, using D'Alembert formula, an explicit formula of the control can be computed. Even if the focus is made on the wave equation, this approach is easily extendable to more general operators.

Citation: Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020055
References:
[1]

M. R. Bai and H. Lin, Plant uncertainty analysis in a duct active noise control problem by using the $H_\infty$ theory, The Journal of the Acoustical Society of America, 104 (1998), 237-247.  doi: 10.1121/1.423274.  Google Scholar

[2]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.  Google Scholar

[3]

M. BodsonJ. S. Jensen and S. C. Douglas, Active noise control for periodic disturbances, Proceedings of the 1998 American Control Conference. ACC(IEEE Cat. No.98CH36207), 4 (1998), 2616-2620.  doi: 10.1109/ACC.1998.703109.  Google Scholar

[4]

C. Boultifat, P. Chevrel, J. Lohéac, M. Yagoubi and P. Loiseau, One-dimensional acoustic propagation model and spatial multi-point active noise control, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), (2017), 2947–2952. doi: 10.1109/CDC.2017.8264088.  Google Scholar

[5]

C. BoultifatP. LoiseauP. ChevrelJ. Lohéac and M. Yagoubi, FxLMS versus $H_\infty$ control for broadband acoustic noise attenuation in a cavity, IFAC-PapersOnLine (20th IFAC World Congress), 50 (2017), 9204-9210.  doi: 10.1016/j.ifacol.2017.08.1277.  Google Scholar

[6]

C. Cattaneo and L. Fontana, D'Alembert formula on finite one-dimensional networks, J. Math. Anal. Appl., 284 (2003), 403-424.  doi: 10.1016/S0022-247X(02)00392-X.  Google Scholar

[7]

R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures, Mathématiques & Applications (Berlin), Mathematics & Applications, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-37726-3.  Google Scholar

[8]

H. Feng and B.-Z. Guo, Observer design and exponential stabilization for wave equation in energy space by boundary displacement measurement only, IEEE Trans. Automat. Control, 62 (2017), 1438-1444.  doi: 10.1109/TAC.2016.2572122.  Google Scholar

[9]

H. Feng and B.-Z. Guo, A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance, IEEE Trans. Automat. Control, 62 (2017), 3774-3787.  doi: 10.1109/TAC.2016.2636571.  Google Scholar

[10]

B.-Z. Guo and F.-F. Jin, Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance, IEEE Trans. Automat. Control, 60 (2015), 824-830.  doi: 10.1109/TAC.2014.2335374.  Google Scholar

[11]

W. GuoZ.-C. Shao and M. Krstic, Adaptive rejection of harmonic disturbance anticollocated with control in 1d wave equation, Automatica J. IFAC, 79 (2017), 17-26.  doi: 10.1016/j.automatica.2017.01.034.  Google Scholar

[12]

B.-Z. Guo and C.-Z. Xu, The stabilization of a one-dimensional wave equation by boundary feedback with noncollocated observation, IEEE Trans. Automat. Control, 52 (2007), 371-377.  doi: 10.1109/TAC.2006.890385.  Google Scholar

[13]

M. Gugat, Exponential stabilization of the wave equation by Dirichlet integral feedback, SIAM J. Control Optim., 53 (2015), 526-546.  doi: 10.1137/140977023.  Google Scholar

[14]

M. Gugat and G. Leugering, Time delay in optimal control loops for wave equations, ESAIM, Control Optim. Calc. Var., 23 (2017), 13-37.  doi: 10.1051/cocv/2015038.  Google Scholar

[15]

V. Komornik, Exact Controllability and Stabilization, The Multiplier Method., RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[16]

S. M. Kuo and D. R. Morgan, Active noise control: A tutorial review, Proceedings of the IEEE, 87 (1999), 943-973.  doi: 10.1109/5.763310.  Google Scholar

[17]

J. le Rond D'Alembert, Recherches sur la courbe que forme une corde tendue mise en vibrations, Histoire de l'Académie Royale des Sciences et Belles Lettres (Année 1747), 3 (1747), 214–249. Google Scholar

[18]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[19]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I., Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[20]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. II, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[21]

P. LoiseauP. ChevrelM. Yagoubi and J. Duffal, Broadband active noise control design through nonsmooth $H_\infty$ synthesis, IFAC-PapersOnLine (8th IFAC Symposium on Robust Control Design ROCOND 2015), 48 (2015), 396-401.  doi: 10.1016/j.ifacol.2015.09.489.  Google Scholar

[22]

P. Loiseau, P. Chevrel, M. Yagoubi and J.-M. Duffal, $H_\infty$ multi-objective and multi-model MIMO control design for broadband noise attenuation in an enclosure, in 2016 European Control Conference (ECC), (2016), 643–648. doi: 10.1109/ECC.2016.7810361.  Google Scholar

[23]

R. T. O'BrienJ. M. WatkinsG. E. Piper and D. C. Baumann, $H_\infty$ active noise control of fan noise in an acoustic duct, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), 5 (2000), 3028-3032.  doi: 10.1109/ACC.2000.879121.  Google Scholar

[24]

B. Rafaely and S. J. Elliott, $H_2/H_\infty$ active control of sound in a headrest: Design and implementation, IEEE Transactions on Control Systems Technology, 7 (1999), 79-84.  doi: 10.1109/87.736757.  Google Scholar

[25]

B. SayyarrodsariJ. P. HowB. Hassibi and A. Carrier, An $H_{\infty}$-optimal alternative to the FxLMS algorithm, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), 2 (1998), 1116-1121.  doi: 10.1109/ACC.1998.703585.  Google Scholar

[26]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[27]

M. Tucsnak and G. Weiss, From exact observability to identification of singular sources, Math. Control Signals Systems, 27 (2015), 1-21.  doi: 10.1007/s00498-014-0132-z.  Google Scholar

show all references

References:
[1]

M. R. Bai and H. Lin, Plant uncertainty analysis in a duct active noise control problem by using the $H_\infty$ theory, The Journal of the Acoustical Society of America, 104 (1998), 237-247.  doi: 10.1121/1.423274.  Google Scholar

[2]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.  Google Scholar

[3]

M. BodsonJ. S. Jensen and S. C. Douglas, Active noise control for periodic disturbances, Proceedings of the 1998 American Control Conference. ACC(IEEE Cat. No.98CH36207), 4 (1998), 2616-2620.  doi: 10.1109/ACC.1998.703109.  Google Scholar

[4]

C. Boultifat, P. Chevrel, J. Lohéac, M. Yagoubi and P. Loiseau, One-dimensional acoustic propagation model and spatial multi-point active noise control, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), (2017), 2947–2952. doi: 10.1109/CDC.2017.8264088.  Google Scholar

[5]

C. BoultifatP. LoiseauP. ChevrelJ. Lohéac and M. Yagoubi, FxLMS versus $H_\infty$ control for broadband acoustic noise attenuation in a cavity, IFAC-PapersOnLine (20th IFAC World Congress), 50 (2017), 9204-9210.  doi: 10.1016/j.ifacol.2017.08.1277.  Google Scholar

[6]

C. Cattaneo and L. Fontana, D'Alembert formula on finite one-dimensional networks, J. Math. Anal. Appl., 284 (2003), 403-424.  doi: 10.1016/S0022-247X(02)00392-X.  Google Scholar

[7]

R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures, Mathématiques & Applications (Berlin), Mathematics & Applications, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-37726-3.  Google Scholar

[8]

H. Feng and B.-Z. Guo, Observer design and exponential stabilization for wave equation in energy space by boundary displacement measurement only, IEEE Trans. Automat. Control, 62 (2017), 1438-1444.  doi: 10.1109/TAC.2016.2572122.  Google Scholar

[9]

H. Feng and B.-Z. Guo, A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance, IEEE Trans. Automat. Control, 62 (2017), 3774-3787.  doi: 10.1109/TAC.2016.2636571.  Google Scholar

[10]

B.-Z. Guo and F.-F. Jin, Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance, IEEE Trans. Automat. Control, 60 (2015), 824-830.  doi: 10.1109/TAC.2014.2335374.  Google Scholar

[11]

W. GuoZ.-C. Shao and M. Krstic, Adaptive rejection of harmonic disturbance anticollocated with control in 1d wave equation, Automatica J. IFAC, 79 (2017), 17-26.  doi: 10.1016/j.automatica.2017.01.034.  Google Scholar

[12]

B.-Z. Guo and C.-Z. Xu, The stabilization of a one-dimensional wave equation by boundary feedback with noncollocated observation, IEEE Trans. Automat. Control, 52 (2007), 371-377.  doi: 10.1109/TAC.2006.890385.  Google Scholar

[13]

M. Gugat, Exponential stabilization of the wave equation by Dirichlet integral feedback, SIAM J. Control Optim., 53 (2015), 526-546.  doi: 10.1137/140977023.  Google Scholar

[14]

M. Gugat and G. Leugering, Time delay in optimal control loops for wave equations, ESAIM, Control Optim. Calc. Var., 23 (2017), 13-37.  doi: 10.1051/cocv/2015038.  Google Scholar

[15]

V. Komornik, Exact Controllability and Stabilization, The Multiplier Method., RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[16]

S. M. Kuo and D. R. Morgan, Active noise control: A tutorial review, Proceedings of the IEEE, 87 (1999), 943-973.  doi: 10.1109/5.763310.  Google Scholar

[17]

J. le Rond D'Alembert, Recherches sur la courbe que forme une corde tendue mise en vibrations, Histoire de l'Académie Royale des Sciences et Belles Lettres (Année 1747), 3 (1747), 214–249. Google Scholar

[18]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[19]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I., Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[20]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. II, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[21]

P. LoiseauP. ChevrelM. Yagoubi and J. Duffal, Broadband active noise control design through nonsmooth $H_\infty$ synthesis, IFAC-PapersOnLine (8th IFAC Symposium on Robust Control Design ROCOND 2015), 48 (2015), 396-401.  doi: 10.1016/j.ifacol.2015.09.489.  Google Scholar

[22]

P. Loiseau, P. Chevrel, M. Yagoubi and J.-M. Duffal, $H_\infty$ multi-objective and multi-model MIMO control design for broadband noise attenuation in an enclosure, in 2016 European Control Conference (ECC), (2016), 643–648. doi: 10.1109/ECC.2016.7810361.  Google Scholar

[23]

R. T. O'BrienJ. M. WatkinsG. E. Piper and D. C. Baumann, $H_\infty$ active noise control of fan noise in an acoustic duct, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), 5 (2000), 3028-3032.  doi: 10.1109/ACC.2000.879121.  Google Scholar

[24]

B. Rafaely and S. J. Elliott, $H_2/H_\infty$ active control of sound in a headrest: Design and implementation, IEEE Transactions on Control Systems Technology, 7 (1999), 79-84.  doi: 10.1109/87.736757.  Google Scholar

[25]

B. SayyarrodsariJ. P. HowB. Hassibi and A. Carrier, An $H_{\infty}$-optimal alternative to the FxLMS algorithm, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), 2 (1998), 1116-1121.  doi: 10.1109/ACC.1998.703585.  Google Scholar

[26]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[27]

M. Tucsnak and G. Weiss, From exact observability to identification of singular sources, Math. Control Signals Systems, 27 (2015), 1-21.  doi: 10.1007/s00498-014-0132-z.  Google Scholar

Figure 1.  Experimental setup used to derive the system (1), $ e(t) = p(t, x_c) $ is the sound pressure measured at the controlled point
Figure 2.  Illustration of the positions assumptions for the acoustic system (2)
Table 1.)">Figure 3.  Plots of the control and disturbance effect on $ p(t, 0) $. (Parameter and disturbances used are given in Table 1.)
Table 1.  Parameters and disturbance used for the numerical illustration of Figure 3
$ L $ $ \xi $ $ \omega $ $ d(t) $ $ d_0(t, x) $
$ 2 $ $ 3/4 $ $ (a, b) $ with $ \sin(5t) $ $ 10\sin(3t)(x-a)(x-b) $
$ a=-7/4 $ and $ b=-5/4 $
$ L $ $ \xi $ $ \omega $ $ d(t) $ $ d_0(t, x) $
$ 2 $ $ 3/4 $ $ (a, b) $ with $ \sin(5t) $ $ 10\sin(3t)(x-a)(x-b) $
$ a=-7/4 $ and $ b=-5/4 $
[1]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[2]

H. T. Banks, R.C. Smith. Feedback control of noise in a 2-D nonlinear structural acoustics model. Discrete & Continuous Dynamical Systems, 1995, 1 (1) : 119-149. doi: 10.3934/dcds.1995.1.119

[3]

Larissa V. Fardigola. Controllability problems for the 1-d wave equations on a half-axis with Neumann boundary control. Mathematical Control & Related Fields, 2013, 3 (2) : 161-183. doi: 10.3934/mcrf.2013.3.161

[4]

François Delarue, Franco Flandoli. The transition point in the zero noise limit for a 1D Peano example. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4071-4083. doi: 10.3934/dcds.2014.34.4071

[5]

Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017

[6]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[7]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6359-6376. doi: 10.3934/dcdsb.2021022

[8]

Sergei Avdonin, Jeff Park, Luz de Teresa. The Kalman condition for the boundary controllability of coupled 1-d wave equations. Evolution Equations & Control Theory, 2020, 9 (1) : 255-273. doi: 10.3934/eect.2020005

[9]

Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791

[10]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[11]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[12]

Vyacheslav A. Trofimov, Evgeny M. Trykin. A new way for decreasing of amplitude of wave reflected from artificial boundary condition for 1D nonlinear Schrödinger equation. Conference Publications, 2015, 2015 (special) : 1070-1078. doi: 10.3934/proc.2015.1070

[13]

Yan Zheng, Jianhua Huang. Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5621-5632. doi: 10.3934/dcdsb.2019075

[14]

Shujuan Lü, Hong Lu, Zhaosheng Feng. Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 575-590. doi: 10.3934/dcdsb.2016.21.575

[15]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5421-5448. doi: 10.3934/dcdsb.2020352

[16]

Long Hu, Tatsien Li, Bopeng Rao. Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type. Communications on Pure & Applied Analysis, 2014, 13 (2) : 881-901. doi: 10.3934/cpaa.2014.13.881

[17]

Yaru Xie, Genqi Xu. The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks & Heterogeneous Media, 2016, 11 (3) : 527-543. doi: 10.3934/nhm.2016008

[18]

Hernán Cendra, Viviana A. Díaz. Lagrange-d'alembert-poincaré equations by several stages. Journal of Geometric Mechanics, 2018, 10 (1) : 1-41. doi: 10.3934/jgm.2018001

[19]

Luca Biasco, Luigi Chierchia. Exponential stability for the resonant D'Alembert model of celestial mechanics. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 569-594. doi: 10.3934/dcds.2005.12.569

[20]

Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (138)
  • HTML views (335)
  • Cited by (0)

[Back to Top]