doi: 10.3934/mcrf.2020055

Exact noise cancellation for 1d-acoustic propagation systems

1. 

Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France

2. 

IMT-Atlantique, LS2N UMR CNRS 6004, (Laboratoire des Sciences du Numérique de Nantes), F-44307 Nantes, France

* Corresponding author

Received  March 2020 Revised  August 2020 Published  December 2020

This paper deals with active noise control applied to a one-dimensional acoustic propagation system. The aim here is to keep over time a zero noise level at a given point. We aim to design this control using noise measurement at some point in the spatial domain. Based on symmetry property, we are able to design a feedback boundary control allowing this fact. Moreover, using D'Alembert formula, an explicit formula of the control can be computed. Even if the focus is made on the wave equation, this approach is easily extendable to more general operators.

Citation: Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2020055
References:
[1]

M. R. Bai and H. Lin, Plant uncertainty analysis in a duct active noise control problem by using the $H_\infty$ theory, The Journal of the Acoustical Society of America, 104 (1998), 237-247.  doi: 10.1121/1.423274.  Google Scholar

[2]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.  Google Scholar

[3]

M. BodsonJ. S. Jensen and S. C. Douglas, Active noise control for periodic disturbances, Proceedings of the 1998 American Control Conference. ACC(IEEE Cat. No.98CH36207), 4 (1998), 2616-2620.  doi: 10.1109/ACC.1998.703109.  Google Scholar

[4]

C. Boultifat, P. Chevrel, J. Lohéac, M. Yagoubi and P. Loiseau, One-dimensional acoustic propagation model and spatial multi-point active noise control, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), (2017), 2947–2952. doi: 10.1109/CDC.2017.8264088.  Google Scholar

[5]

C. BoultifatP. LoiseauP. ChevrelJ. Lohéac and M. Yagoubi, FxLMS versus $H_\infty$ control for broadband acoustic noise attenuation in a cavity, IFAC-PapersOnLine (20th IFAC World Congress), 50 (2017), 9204-9210.  doi: 10.1016/j.ifacol.2017.08.1277.  Google Scholar

[6]

C. Cattaneo and L. Fontana, D'Alembert formula on finite one-dimensional networks, J. Math. Anal. Appl., 284 (2003), 403-424.  doi: 10.1016/S0022-247X(02)00392-X.  Google Scholar

[7]

R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures, Mathématiques & Applications (Berlin), Mathematics & Applications, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-37726-3.  Google Scholar

[8]

H. Feng and B.-Z. Guo, Observer design and exponential stabilization for wave equation in energy space by boundary displacement measurement only, IEEE Trans. Automat. Control, 62 (2017), 1438-1444.  doi: 10.1109/TAC.2016.2572122.  Google Scholar

[9]

H. Feng and B.-Z. Guo, A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance, IEEE Trans. Automat. Control, 62 (2017), 3774-3787.  doi: 10.1109/TAC.2016.2636571.  Google Scholar

[10]

B.-Z. Guo and F.-F. Jin, Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance, IEEE Trans. Automat. Control, 60 (2015), 824-830.  doi: 10.1109/TAC.2014.2335374.  Google Scholar

[11]

W. GuoZ.-C. Shao and M. Krstic, Adaptive rejection of harmonic disturbance anticollocated with control in 1d wave equation, Automatica J. IFAC, 79 (2017), 17-26.  doi: 10.1016/j.automatica.2017.01.034.  Google Scholar

[12]

B.-Z. Guo and C.-Z. Xu, The stabilization of a one-dimensional wave equation by boundary feedback with noncollocated observation, IEEE Trans. Automat. Control, 52 (2007), 371-377.  doi: 10.1109/TAC.2006.890385.  Google Scholar

[13]

M. Gugat, Exponential stabilization of the wave equation by Dirichlet integral feedback, SIAM J. Control Optim., 53 (2015), 526-546.  doi: 10.1137/140977023.  Google Scholar

[14]

M. Gugat and G. Leugering, Time delay in optimal control loops for wave equations, ESAIM, Control Optim. Calc. Var., 23 (2017), 13-37.  doi: 10.1051/cocv/2015038.  Google Scholar

[15]

V. Komornik, Exact Controllability and Stabilization, The Multiplier Method., RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[16]

S. M. Kuo and D. R. Morgan, Active noise control: A tutorial review, Proceedings of the IEEE, 87 (1999), 943-973.  doi: 10.1109/5.763310.  Google Scholar

[17]

J. le Rond D'Alembert, Recherches sur la courbe que forme une corde tendue mise en vibrations, Histoire de l'Académie Royale des Sciences et Belles Lettres (Année 1747), 3 (1747), 214–249. Google Scholar

[18]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[19]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I., Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[20]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. II, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[21]

P. LoiseauP. ChevrelM. Yagoubi and J. Duffal, Broadband active noise control design through nonsmooth $H_\infty$ synthesis, IFAC-PapersOnLine (8th IFAC Symposium on Robust Control Design ROCOND 2015), 48 (2015), 396-401.  doi: 10.1016/j.ifacol.2015.09.489.  Google Scholar

[22]

P. Loiseau, P. Chevrel, M. Yagoubi and J.-M. Duffal, $H_\infty$ multi-objective and multi-model MIMO control design for broadband noise attenuation in an enclosure, in 2016 European Control Conference (ECC), (2016), 643–648. doi: 10.1109/ECC.2016.7810361.  Google Scholar

[23]

R. T. O'BrienJ. M. WatkinsG. E. Piper and D. C. Baumann, $H_\infty$ active noise control of fan noise in an acoustic duct, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), 5 (2000), 3028-3032.  doi: 10.1109/ACC.2000.879121.  Google Scholar

[24]

B. Rafaely and S. J. Elliott, $H_2/H_\infty$ active control of sound in a headrest: Design and implementation, IEEE Transactions on Control Systems Technology, 7 (1999), 79-84.  doi: 10.1109/87.736757.  Google Scholar

[25]

B. SayyarrodsariJ. P. HowB. Hassibi and A. Carrier, An $H_{\infty}$-optimal alternative to the FxLMS algorithm, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), 2 (1998), 1116-1121.  doi: 10.1109/ACC.1998.703585.  Google Scholar

[26]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[27]

M. Tucsnak and G. Weiss, From exact observability to identification of singular sources, Math. Control Signals Systems, 27 (2015), 1-21.  doi: 10.1007/s00498-014-0132-z.  Google Scholar

show all references

References:
[1]

M. R. Bai and H. Lin, Plant uncertainty analysis in a duct active noise control problem by using the $H_\infty$ theory, The Journal of the Acoustical Society of America, 104 (1998), 237-247.  doi: 10.1121/1.423274.  Google Scholar

[2]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.  Google Scholar

[3]

M. BodsonJ. S. Jensen and S. C. Douglas, Active noise control for periodic disturbances, Proceedings of the 1998 American Control Conference. ACC(IEEE Cat. No.98CH36207), 4 (1998), 2616-2620.  doi: 10.1109/ACC.1998.703109.  Google Scholar

[4]

C. Boultifat, P. Chevrel, J. Lohéac, M. Yagoubi and P. Loiseau, One-dimensional acoustic propagation model and spatial multi-point active noise control, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), (2017), 2947–2952. doi: 10.1109/CDC.2017.8264088.  Google Scholar

[5]

C. BoultifatP. LoiseauP. ChevrelJ. Lohéac and M. Yagoubi, FxLMS versus $H_\infty$ control for broadband acoustic noise attenuation in a cavity, IFAC-PapersOnLine (20th IFAC World Congress), 50 (2017), 9204-9210.  doi: 10.1016/j.ifacol.2017.08.1277.  Google Scholar

[6]

C. Cattaneo and L. Fontana, D'Alembert formula on finite one-dimensional networks, J. Math. Anal. Appl., 284 (2003), 403-424.  doi: 10.1016/S0022-247X(02)00392-X.  Google Scholar

[7]

R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures, Mathématiques & Applications (Berlin), Mathematics & Applications, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-37726-3.  Google Scholar

[8]

H. Feng and B.-Z. Guo, Observer design and exponential stabilization for wave equation in energy space by boundary displacement measurement only, IEEE Trans. Automat. Control, 62 (2017), 1438-1444.  doi: 10.1109/TAC.2016.2572122.  Google Scholar

[9]

H. Feng and B.-Z. Guo, A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance, IEEE Trans. Automat. Control, 62 (2017), 3774-3787.  doi: 10.1109/TAC.2016.2636571.  Google Scholar

[10]

B.-Z. Guo and F.-F. Jin, Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance, IEEE Trans. Automat. Control, 60 (2015), 824-830.  doi: 10.1109/TAC.2014.2335374.  Google Scholar

[11]

W. GuoZ.-C. Shao and M. Krstic, Adaptive rejection of harmonic disturbance anticollocated with control in 1d wave equation, Automatica J. IFAC, 79 (2017), 17-26.  doi: 10.1016/j.automatica.2017.01.034.  Google Scholar

[12]

B.-Z. Guo and C.-Z. Xu, The stabilization of a one-dimensional wave equation by boundary feedback with noncollocated observation, IEEE Trans. Automat. Control, 52 (2007), 371-377.  doi: 10.1109/TAC.2006.890385.  Google Scholar

[13]

M. Gugat, Exponential stabilization of the wave equation by Dirichlet integral feedback, SIAM J. Control Optim., 53 (2015), 526-546.  doi: 10.1137/140977023.  Google Scholar

[14]

M. Gugat and G. Leugering, Time delay in optimal control loops for wave equations, ESAIM, Control Optim. Calc. Var., 23 (2017), 13-37.  doi: 10.1051/cocv/2015038.  Google Scholar

[15]

V. Komornik, Exact Controllability and Stabilization, The Multiplier Method., RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[16]

S. M. Kuo and D. R. Morgan, Active noise control: A tutorial review, Proceedings of the IEEE, 87 (1999), 943-973.  doi: 10.1109/5.763310.  Google Scholar

[17]

J. le Rond D'Alembert, Recherches sur la courbe que forme une corde tendue mise en vibrations, Histoire de l'Académie Royale des Sciences et Belles Lettres (Année 1747), 3 (1747), 214–249. Google Scholar

[18]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[19]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I., Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[20]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. II, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[21]

P. LoiseauP. ChevrelM. Yagoubi and J. Duffal, Broadband active noise control design through nonsmooth $H_\infty$ synthesis, IFAC-PapersOnLine (8th IFAC Symposium on Robust Control Design ROCOND 2015), 48 (2015), 396-401.  doi: 10.1016/j.ifacol.2015.09.489.  Google Scholar

[22]

P. Loiseau, P. Chevrel, M. Yagoubi and J.-M. Duffal, $H_\infty$ multi-objective and multi-model MIMO control design for broadband noise attenuation in an enclosure, in 2016 European Control Conference (ECC), (2016), 643–648. doi: 10.1109/ECC.2016.7810361.  Google Scholar

[23]

R. T. O'BrienJ. M. WatkinsG. E. Piper and D. C. Baumann, $H_\infty$ active noise control of fan noise in an acoustic duct, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), 5 (2000), 3028-3032.  doi: 10.1109/ACC.2000.879121.  Google Scholar

[24]

B. Rafaely and S. J. Elliott, $H_2/H_\infty$ active control of sound in a headrest: Design and implementation, IEEE Transactions on Control Systems Technology, 7 (1999), 79-84.  doi: 10.1109/87.736757.  Google Scholar

[25]

B. SayyarrodsariJ. P. HowB. Hassibi and A. Carrier, An $H_{\infty}$-optimal alternative to the FxLMS algorithm, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), 2 (1998), 1116-1121.  doi: 10.1109/ACC.1998.703585.  Google Scholar

[26]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[27]

M. Tucsnak and G. Weiss, From exact observability to identification of singular sources, Math. Control Signals Systems, 27 (2015), 1-21.  doi: 10.1007/s00498-014-0132-z.  Google Scholar

Figure 1.  Experimental setup used to derive the system (1), $ e(t) = p(t, x_c) $ is the sound pressure measured at the controlled point
Figure 2.  Illustration of the positions assumptions for the acoustic system (2)
Table 1.)">Figure 3.  Plots of the control and disturbance effect on $ p(t, 0) $. (Parameter and disturbances used are given in Table 1.)
Table 1.  Parameters and disturbance used for the numerical illustration of Figure 3
$ L $ $ \xi $ $ \omega $ $ d(t) $ $ d_0(t, x) $
$ 2 $ $ 3/4 $ $ (a, b) $ with $ \sin(5t) $ $ 10\sin(3t)(x-a)(x-b) $
$ a=-7/4 $ and $ b=-5/4 $
$ L $ $ \xi $ $ \omega $ $ d(t) $ $ d_0(t, x) $
$ 2 $ $ 3/4 $ $ (a, b) $ with $ \sin(5t) $ $ 10\sin(3t)(x-a)(x-b) $
$ a=-7/4 $ and $ b=-5/4 $
[1]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021048

[2]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[3]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[4]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[5]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[6]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021036

[7]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[8]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[9]

Mostafa Ghelichi, A. M. Goltabar, H. R. Tavakoli, A. Karamodin. Neuro-fuzzy active control optimized by Tug of war optimization method for seismically excited benchmark highway bridge. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 333-351. doi: 10.3934/naco.2020029

[10]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[11]

Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021052

[12]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[13]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[14]

Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233

[15]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[16]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[17]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

[18]

Beixiang Fang, Qin Zhao. Uniqueness of steady 1-D shock solutions in a finite nozzle via vanishing viscosity aguments. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021066

[19]

Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021081

[20]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

2019 Impact Factor: 0.857

Article outline

Figures and Tables

[Back to Top]