March  2022, 12(1): 147-168. doi: 10.3934/mcrf.2021005

Noise and stability in reaction-diffusion equations

1. 

College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. 

School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, China

3. 

Institute of Applied Mathematics, Henan University, Kaifeng 475001, China

* Corresponding author: Jinlong Wei

Received  August 2020 Revised  November 2020 Published  March 2022 Early access  March 2021

Fund Project: The authors are grateful to the referees for their valuable suggestions and comments on the original manuscript. This research was partly supported by the NSF of China grants 11771123, 11501577, 11626085 and the Startup Foundation for Introducing Talent of NUIST

We study the stability of reaction-diffusion equations in presence of noise. The relationship of stability of solutions between the stochastic ordinary different equations and the corresponding stochastic reaction-diffusion equation is firstly established. Then, by using the Lyapunov method, sufficient conditions for mean square and stochastic stability are given. The results show that the multiplicative noise can make the solution stable, but the additive noise will be not.

Citation: Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control and Related Fields, 2022, 12 (1) : 147-168. doi: 10.3934/mcrf.2021005
References:
[1]

L. Arnold, I. Chueshov and G. Ochs, Random Dynamical Systems Methods in Ship Stability: A Case Study. Interacting Stochastic Systems, Springer, Berlin, 2005, 409–433. doi: 10.1007/3-540-27110-4_19.

[2]

V. BarbuC. Lefter and G. Tessitore, A note on the stabilizability of stochastic heat equations with multiplicative noise, C. R. Math. Acad. Sci. Paris, 334 (2002), 311-316.  doi: 10.1016/S1631-073X(02)02259-8.

[3]

V. Barbu and G. Da Prato, Internal stabilization by noise of the Navier-Stokes equation, SIAM J. Control Optim., 49 (2011), 1-20.  doi: 10.1137/09077607X.

[4]

V. Barbu, Note on the internal stabilization of stochastic parabolic equations with linearly multiplicative Gaussian noise, ESAIM Control Optim. Calc. Var., 19 (2013), 1055-1063.  doi: 10.1051/cocv/2012044.

[5]

P. -L. Chow, Stochastic partial differential equations. Applied Mathematics and Nonlinear Science Series, Chapman & Hall, Boca Raton, FL, 2007.

[6]

P-L. Chow, Explosive solutions of stochastic reaction-diffusion equations in mean $L^p$-norm, J. Differential Equations, 250 (2011), 2567-2580.  doi: 10.1016/j.jde.2010.11.008.

[7]

T. CaraballoP. Kloeden and B. Schmalfuß, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl. Math. Optim., 50 (2004), 183-207.  doi: 10.1007/s00245-004-0802-1.

[8] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. 
[9]

K. DareiotisM. Gerencsér and B. Gess, Entropy solutions for stochastic porous media equations, J. Differential Equations, 266 (2019), 3732-3763.  doi: 10.1016/j.jde.2018.09.012.

[10]

E. Fedrizzi and F. Flandoli, Noise prevents singularities in linear transport equations, J. Funct. Anal., 264 (2013), 1329-1354.  doi: 10.1016/j.jfa.2013.01.003.

[11]

F. FlandoliM. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180 (2010), 1-53.  doi: 10.1007/s00222-009-0224-4.

[12]

F. Flandoli and D. Luo, Euler-Lagrangian approach to 3D stochastic Euler equations, J. Geom. Mech., 11 (2019), 153-165.  doi: 10.3934/jgm.2019008.

[13]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.

[14]

R. Khasminskii, Stochastic Stability of Differential Equations, Stochastic Modelling and Applied Probability, vol. 66, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0.

[15]

K. Liu and X. Mao, Exponential stability of non-linear stochastic evolution equations, Stochastic Process. Appl., 78 (1998), 173-193.  doi: 10.1016/S0304-4149(98)00048-9.

[16]

G. Lv and J. Duan, Impacts of noise on a class of partial differential equations, J. Differential Equations, 258 (2015), 2196-2220.  doi: 10.1016/j.jde.2014.12.002.

[17]

G. LvJ. DuanL. Wang and J. Wu, Impact of noise on ordinary differential equations, Dynamic system and Applications, 27 (2018), 225-236. 

[18]

G. LvH. GaoJ. Wei and J.-L. Wu, BMO and Morrey-Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations, J. Differential Equations, 266 (2019), 2666-2717.  doi: 10.1016/j.jde.2018.08.042.

[19]

G. Lv and J. Wei, Global existence and non-existence of stochastic parabolic equations, preprint, 2019, arXiv: 1902.07389.

[20]

M. Mackey and G. Nechaeva, Noise and stability in differential delay equations, J. Dynam. Differential Equations, 6 (1994), 395-426.  doi: 10.1007/BF02218856.

[21]

X. Mao, Exponential Stability of Stochastic Differential Equations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 182. Marcel Dekker, Inc., New York, 1994.

[22]

D. H. Nguen and G. Yin, Stability of regime-switching diffusion systems with discrete states belonging to a countable set, SIAM J. Control Optim., 56 (2018), 3893-3917.  doi: 10.1137/17M1118476.

[23]

R. Tian, J. Wei and J. Wu, On a generalized population dynamics equation with environmental noise, Statist. Probab. Lett., 168 (2021) 108944, 7 pp. doi: 10.1016/j. spl. 2020.108944.

[24]

J. B. Walsh, An Introduction to Stochastic Partial Differential Equations, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986. doi: 10.1007/BFb0074920.

[25]

Y. Wang, F. Wu and X. Mao, Stability in distribution of stochastic functional differential equations, Systems Control Lett., 132 (2019), 104513, 10 pp. doi: 10.1016/j. sysconle. 2019.104513.

[26]

F. WuG. Yin and L.Y. Wang, Stability of a pure random delay system with two-time-scale Markovian switching, J. Differential Equations, 253 (2012), 878-905.  doi: 10.1016/j.jde.2012.04.017.

[27] Q. Ye and Z. Li, Introduction to Reaction-Diffusion Equations, Science Press, Beijing, 1990. 
[28]

X. Zhang, Stochastic differential equations with Sobolev drifts and driven by $\alpha$-stable processes, Ann. Inst. Henri Poincaré Probab. Stat., 49 (2013), 1057-1079.  doi: 10.1214/12-AIHP476.

show all references

References:
[1]

L. Arnold, I. Chueshov and G. Ochs, Random Dynamical Systems Methods in Ship Stability: A Case Study. Interacting Stochastic Systems, Springer, Berlin, 2005, 409–433. doi: 10.1007/3-540-27110-4_19.

[2]

V. BarbuC. Lefter and G. Tessitore, A note on the stabilizability of stochastic heat equations with multiplicative noise, C. R. Math. Acad. Sci. Paris, 334 (2002), 311-316.  doi: 10.1016/S1631-073X(02)02259-8.

[3]

V. Barbu and G. Da Prato, Internal stabilization by noise of the Navier-Stokes equation, SIAM J. Control Optim., 49 (2011), 1-20.  doi: 10.1137/09077607X.

[4]

V. Barbu, Note on the internal stabilization of stochastic parabolic equations with linearly multiplicative Gaussian noise, ESAIM Control Optim. Calc. Var., 19 (2013), 1055-1063.  doi: 10.1051/cocv/2012044.

[5]

P. -L. Chow, Stochastic partial differential equations. Applied Mathematics and Nonlinear Science Series, Chapman & Hall, Boca Raton, FL, 2007.

[6]

P-L. Chow, Explosive solutions of stochastic reaction-diffusion equations in mean $L^p$-norm, J. Differential Equations, 250 (2011), 2567-2580.  doi: 10.1016/j.jde.2010.11.008.

[7]

T. CaraballoP. Kloeden and B. Schmalfuß, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl. Math. Optim., 50 (2004), 183-207.  doi: 10.1007/s00245-004-0802-1.

[8] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. 
[9]

K. DareiotisM. Gerencsér and B. Gess, Entropy solutions for stochastic porous media equations, J. Differential Equations, 266 (2019), 3732-3763.  doi: 10.1016/j.jde.2018.09.012.

[10]

E. Fedrizzi and F. Flandoli, Noise prevents singularities in linear transport equations, J. Funct. Anal., 264 (2013), 1329-1354.  doi: 10.1016/j.jfa.2013.01.003.

[11]

F. FlandoliM. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180 (2010), 1-53.  doi: 10.1007/s00222-009-0224-4.

[12]

F. Flandoli and D. Luo, Euler-Lagrangian approach to 3D stochastic Euler equations, J. Geom. Mech., 11 (2019), 153-165.  doi: 10.3934/jgm.2019008.

[13]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.

[14]

R. Khasminskii, Stochastic Stability of Differential Equations, Stochastic Modelling and Applied Probability, vol. 66, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0.

[15]

K. Liu and X. Mao, Exponential stability of non-linear stochastic evolution equations, Stochastic Process. Appl., 78 (1998), 173-193.  doi: 10.1016/S0304-4149(98)00048-9.

[16]

G. Lv and J. Duan, Impacts of noise on a class of partial differential equations, J. Differential Equations, 258 (2015), 2196-2220.  doi: 10.1016/j.jde.2014.12.002.

[17]

G. LvJ. DuanL. Wang and J. Wu, Impact of noise on ordinary differential equations, Dynamic system and Applications, 27 (2018), 225-236. 

[18]

G. LvH. GaoJ. Wei and J.-L. Wu, BMO and Morrey-Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations, J. Differential Equations, 266 (2019), 2666-2717.  doi: 10.1016/j.jde.2018.08.042.

[19]

G. Lv and J. Wei, Global existence and non-existence of stochastic parabolic equations, preprint, 2019, arXiv: 1902.07389.

[20]

M. Mackey and G. Nechaeva, Noise and stability in differential delay equations, J. Dynam. Differential Equations, 6 (1994), 395-426.  doi: 10.1007/BF02218856.

[21]

X. Mao, Exponential Stability of Stochastic Differential Equations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 182. Marcel Dekker, Inc., New York, 1994.

[22]

D. H. Nguen and G. Yin, Stability of regime-switching diffusion systems with discrete states belonging to a countable set, SIAM J. Control Optim., 56 (2018), 3893-3917.  doi: 10.1137/17M1118476.

[23]

R. Tian, J. Wei and J. Wu, On a generalized population dynamics equation with environmental noise, Statist. Probab. Lett., 168 (2021) 108944, 7 pp. doi: 10.1016/j. spl. 2020.108944.

[24]

J. B. Walsh, An Introduction to Stochastic Partial Differential Equations, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986. doi: 10.1007/BFb0074920.

[25]

Y. Wang, F. Wu and X. Mao, Stability in distribution of stochastic functional differential equations, Systems Control Lett., 132 (2019), 104513, 10 pp. doi: 10.1016/j. sysconle. 2019.104513.

[26]

F. WuG. Yin and L.Y. Wang, Stability of a pure random delay system with two-time-scale Markovian switching, J. Differential Equations, 253 (2012), 878-905.  doi: 10.1016/j.jde.2012.04.017.

[27] Q. Ye and Z. Li, Introduction to Reaction-Diffusion Equations, Science Press, Beijing, 1990. 
[28]

X. Zhang, Stochastic differential equations with Sobolev drifts and driven by $\alpha$-stable processes, Ann. Inst. Henri Poincaré Probab. Stat., 49 (2013), 1057-1079.  doi: 10.1214/12-AIHP476.

[1]

Wei Wang, Kai Liu, Xiulian Wang. Sensitivity to small delays of mean square stability for stochastic neutral evolution equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2403-2418. doi: 10.3934/cpaa.2020105

[2]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[3]

Pham Huu Anh Ngoc. New criteria for exponential stability in mean square of stochastic functional differential equations with infinite delay. Evolution Equations and Control Theory, 2022, 11 (4) : 1191-1200. doi: 10.3934/eect.2021040

[4]

Zhen Li, Jicheng Liu. Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5709-5736. doi: 10.3934/dcdsb.2019103

[5]

K Najarian. On stochastic stability of dynamic neural models in presence of noise. Conference Publications, 2003, 2003 (Special) : 656-663. doi: 10.3934/proc.2003.2003.656

[6]

Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 91-99. doi: 10.3934/proc.2003.2003.91

[7]

Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671

[8]

Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631

[9]

Qi Wang, Lifang Huang, Kunwen Wen, Jianshe Yu. The mean and noise of stochastic gene transcription with cell division. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1255-1270. doi: 10.3934/mbe.2018058

[10]

Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial and Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068

[11]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[12]

Hailong Zhu, Jifeng Chu, Weinian Zhang. Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1935-1953. doi: 10.3934/dcds.2018078

[13]

Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3651-3657. doi: 10.3934/dcdsb.2020077

[14]

Tian Zhang, Chuanhou Gao. Stability with general decay rate of hybrid neutral stochastic pantograph differential equations driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3725-3747. doi: 10.3934/dcdsb.2021204

[15]

Yanqiang Chang, Huabin Chen. Stability analysis of stochastic delay differential equations with Markovian switching driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (10) : 5935-5952. doi: 10.3934/dcdsb.2021301

[16]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

[17]

Florian Rupp. Construction of mean-square Lyapunov-basins for random ordinary differential equations. Journal of Computational Dynamics, 2022  doi: 10.3934/jcd.2022024

[18]

Ziheng Chen, Siqing Gan, Xiaojie Wang. Mean-square approximations of Lévy noise driven SDEs with super-linearly growing diffusion and jump coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4513-4545. doi: 10.3934/dcdsb.2019154

[19]

Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071

[20]

Sigurdur Freyr Hafstein. A constructive converse Lyapunov theorem on exponential stability. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 657-678. doi: 10.3934/dcds.2004.10.657

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (354)
  • HTML views (362)
  • Cited by (0)

Other articles
by authors

[Back to Top]