    doi: 10.3934/mcrf.2021005

## Noise and stability in reaction-diffusion equations

 1 College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China 2 School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, China 3 Institute of Applied Mathematics, Henan University, Kaifeng 475001, China

* Corresponding author: Jinlong Wei

Received  August 2020 Revised  November 2020 Published  March 2021

Fund Project: The authors are grateful to the referees for their valuable suggestions and comments on the original manuscript. This research was partly supported by the NSF of China grants 11771123, 11501577, 11626085 and the Startup Foundation for Introducing Talent of NUIST

We study the stability of reaction-diffusion equations in presence of noise. The relationship of stability of solutions between the stochastic ordinary different equations and the corresponding stochastic reaction-diffusion equation is firstly established. Then, by using the Lyapunov method, sufficient conditions for mean square and stochastic stability are given. The results show that the multiplicative noise can make the solution stable, but the additive noise will be not.

Citation: Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021005
##### References:
  L. Arnold, I. Chueshov and G. Ochs, Random Dynamical Systems Methods in Ship Stability: A Case Study. Interacting Stochastic Systems, Springer, Berlin, 2005, 409–433. doi: 10.1007/3-540-27110-4_19.  Google Scholar  V. Barbu, C. Lefter and G. Tessitore, A note on the stabilizability of stochastic heat equations with multiplicative noise, C. R. Math. Acad. Sci. Paris, 334 (2002), 311-316.  doi: 10.1016/S1631-073X(02)02259-8.  Google Scholar  V. Barbu and G. Da Prato, Internal stabilization by noise of the Navier-Stokes equation, SIAM J. Control Optim., 49 (2011), 1-20.  doi: 10.1137/09077607X.  Google Scholar  V. Barbu, Note on the internal stabilization of stochastic parabolic equations with linearly multiplicative Gaussian noise, ESAIM Control Optim. Calc. Var., 19 (2013), 1055-1063.  doi: 10.1051/cocv/2012044.  Google Scholar  P. -L. Chow, Stochastic partial differential equations. Applied Mathematics and Nonlinear Science Series, Chapman & Hall, Boca Raton, FL, 2007. Google Scholar  P-L. Chow, Explosive solutions of stochastic reaction-diffusion equations in mean $L^p$-norm, J. Differential Equations, 250 (2011), 2567-2580.  doi: 10.1016/j.jde.2010.11.008.  Google Scholar  T. Caraballo, P. Kloeden and B. Schmalfuß, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl. Math. Optim., 50 (2004), 183-207.  doi: 10.1007/s00245-004-0802-1.  Google Scholar  G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992.   Google Scholar  K. Dareiotis, M. Gerencsér and B. Gess, Entropy solutions for stochastic porous media equations, J. Differential Equations, 266 (2019), 3732-3763.  doi: 10.1016/j.jde.2018.09.012.  Google Scholar  E. Fedrizzi and F. Flandoli, Noise prevents singularities in linear transport equations, J. Funct. Anal., 264 (2013), 1329-1354.  doi: 10.1016/j.jfa.2013.01.003.  Google Scholar  F. Flandoli, M. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180 (2010), 1-53.  doi: 10.1007/s00222-009-0224-4.  Google Scholar  F. Flandoli and D. Luo, Euler-Lagrangian approach to 3D stochastic Euler equations, J. Geom. Mech., 11 (2019), 153-165.  doi: 10.3934/jgm.2019008.  Google Scholar  D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar  R. Khasminskii, Stochastic Stability of Differential Equations, Stochastic Modelling and Applied Probability, vol. 66, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0.  Google Scholar  K. Liu and X. Mao, Exponential stability of non-linear stochastic evolution equations, Stochastic Process. Appl., 78 (1998), 173-193.  doi: 10.1016/S0304-4149(98)00048-9.  Google Scholar  G. Lv and J. Duan, Impacts of noise on a class of partial differential equations, J. Differential Equations, 258 (2015), 2196-2220.  doi: 10.1016/j.jde.2014.12.002.  Google Scholar  G. Lv, J. Duan, L. Wang and J. Wu, Impact of noise on ordinary differential equations, Dynamic system and Applications, 27 (2018), 225-236.   Google Scholar  G. Lv, H. Gao, J. Wei and J.-L. Wu, BMO and Morrey-Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations, J. Differential Equations, 266 (2019), 2666-2717.  doi: 10.1016/j.jde.2018.08.042.  Google Scholar  G. Lv and J. Wei, Global existence and non-existence of stochastic parabolic equations, preprint, 2019, arXiv: 1902.07389. Google Scholar  M. Mackey and G. Nechaeva, Noise and stability in differential delay equations, J. Dynam. Differential Equations, 6 (1994), 395-426.  doi: 10.1007/BF02218856.  Google Scholar  X. Mao, Exponential Stability of Stochastic Differential Equations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 182. Marcel Dekker, Inc., New York, 1994. Google Scholar  D. H. Nguen and G. Yin, Stability of regime-switching diffusion systems with discrete states belonging to a countable set, SIAM J. Control Optim., 56 (2018), 3893-3917.  doi: 10.1137/17M1118476.  Google Scholar  R. Tian, J. Wei and J. Wu, On a generalized population dynamics equation with environmental noise, Statist. Probab. Lett., 168 (2021) 108944, 7 pp. doi: 10.1016/j. spl. 2020.108944.  Google Scholar  J. B. Walsh, An Introduction to Stochastic Partial Differential Equations, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986. doi: 10.1007/BFb0074920.  Google Scholar  Y. Wang, F. Wu and X. Mao, Stability in distribution of stochastic functional differential equations, Systems Control Lett., 132 (2019), 104513, 10 pp. doi: 10.1016/j. sysconle. 2019.104513.  Google Scholar  F. Wu, G. Yin and L.Y. Wang, Stability of a pure random delay system with two-time-scale Markovian switching, J. Differential Equations, 253 (2012), 878-905.  doi: 10.1016/j.jde.2012.04.017.  Google Scholar  Q. Ye and Z. Li, Introduction to Reaction-Diffusion Equations, Science Press, Beijing, 1990. Google Scholar  X. Zhang, Stochastic differential equations with Sobolev drifts and driven by $\alpha$-stable processes, Ann. Inst. Henri Poincaré Probab. Stat., 49 (2013), 1057-1079.  doi: 10.1214/12-AIHP476.  Google Scholar

show all references

##### References:
  L. Arnold, I. Chueshov and G. Ochs, Random Dynamical Systems Methods in Ship Stability: A Case Study. Interacting Stochastic Systems, Springer, Berlin, 2005, 409–433. doi: 10.1007/3-540-27110-4_19.  Google Scholar  V. Barbu, C. Lefter and G. Tessitore, A note on the stabilizability of stochastic heat equations with multiplicative noise, C. R. Math. Acad. Sci. Paris, 334 (2002), 311-316.  doi: 10.1016/S1631-073X(02)02259-8.  Google Scholar  V. Barbu and G. Da Prato, Internal stabilization by noise of the Navier-Stokes equation, SIAM J. Control Optim., 49 (2011), 1-20.  doi: 10.1137/09077607X.  Google Scholar  V. Barbu, Note on the internal stabilization of stochastic parabolic equations with linearly multiplicative Gaussian noise, ESAIM Control Optim. Calc. Var., 19 (2013), 1055-1063.  doi: 10.1051/cocv/2012044.  Google Scholar  P. -L. Chow, Stochastic partial differential equations. Applied Mathematics and Nonlinear Science Series, Chapman & Hall, Boca Raton, FL, 2007. Google Scholar  P-L. Chow, Explosive solutions of stochastic reaction-diffusion equations in mean $L^p$-norm, J. Differential Equations, 250 (2011), 2567-2580.  doi: 10.1016/j.jde.2010.11.008.  Google Scholar  T. Caraballo, P. Kloeden and B. Schmalfuß, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl. Math. Optim., 50 (2004), 183-207.  doi: 10.1007/s00245-004-0802-1.  Google Scholar  G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992.   Google Scholar  K. Dareiotis, M. Gerencsér and B. Gess, Entropy solutions for stochastic porous media equations, J. Differential Equations, 266 (2019), 3732-3763.  doi: 10.1016/j.jde.2018.09.012.  Google Scholar  E. Fedrizzi and F. Flandoli, Noise prevents singularities in linear transport equations, J. Funct. Anal., 264 (2013), 1329-1354.  doi: 10.1016/j.jfa.2013.01.003.  Google Scholar  F. Flandoli, M. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180 (2010), 1-53.  doi: 10.1007/s00222-009-0224-4.  Google Scholar  F. Flandoli and D. Luo, Euler-Lagrangian approach to 3D stochastic Euler equations, J. Geom. Mech., 11 (2019), 153-165.  doi: 10.3934/jgm.2019008.  Google Scholar  D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar  R. Khasminskii, Stochastic Stability of Differential Equations, Stochastic Modelling and Applied Probability, vol. 66, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0.  Google Scholar  K. Liu and X. Mao, Exponential stability of non-linear stochastic evolution equations, Stochastic Process. Appl., 78 (1998), 173-193.  doi: 10.1016/S0304-4149(98)00048-9.  Google Scholar  G. Lv and J. Duan, Impacts of noise on a class of partial differential equations, J. Differential Equations, 258 (2015), 2196-2220.  doi: 10.1016/j.jde.2014.12.002.  Google Scholar  G. Lv, J. Duan, L. Wang and J. Wu, Impact of noise on ordinary differential equations, Dynamic system and Applications, 27 (2018), 225-236.   Google Scholar  G. Lv, H. Gao, J. Wei and J.-L. Wu, BMO and Morrey-Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations, J. Differential Equations, 266 (2019), 2666-2717.  doi: 10.1016/j.jde.2018.08.042.  Google Scholar  G. Lv and J. Wei, Global existence and non-existence of stochastic parabolic equations, preprint, 2019, arXiv: 1902.07389. Google Scholar  M. Mackey and G. Nechaeva, Noise and stability in differential delay equations, J. Dynam. Differential Equations, 6 (1994), 395-426.  doi: 10.1007/BF02218856.  Google Scholar  X. Mao, Exponential Stability of Stochastic Differential Equations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 182. Marcel Dekker, Inc., New York, 1994. Google Scholar  D. H. Nguen and G. Yin, Stability of regime-switching diffusion systems with discrete states belonging to a countable set, SIAM J. Control Optim., 56 (2018), 3893-3917.  doi: 10.1137/17M1118476.  Google Scholar  R. Tian, J. Wei and J. Wu, On a generalized population dynamics equation with environmental noise, Statist. Probab. Lett., 168 (2021) 108944, 7 pp. doi: 10.1016/j. spl. 2020.108944.  Google Scholar  J. B. Walsh, An Introduction to Stochastic Partial Differential Equations, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986. doi: 10.1007/BFb0074920.  Google Scholar  Y. Wang, F. Wu and X. Mao, Stability in distribution of stochastic functional differential equations, Systems Control Lett., 132 (2019), 104513, 10 pp. doi: 10.1016/j. sysconle. 2019.104513.  Google Scholar  F. Wu, G. Yin and L.Y. Wang, Stability of a pure random delay system with two-time-scale Markovian switching, J. Differential Equations, 253 (2012), 878-905.  doi: 10.1016/j.jde.2012.04.017.  Google Scholar  Q. Ye and Z. Li, Introduction to Reaction-Diffusion Equations, Science Press, Beijing, 1990. Google Scholar  X. Zhang, Stochastic differential equations with Sobolev drifts and driven by $\alpha$-stable processes, Ann. Inst. Henri Poincaré Probab. Stat., 49 (2013), 1057-1079.  doi: 10.1214/12-AIHP476.  Google Scholar
  Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066  Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021083  Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015  Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221  María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088  Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094  Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212  Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089  Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209  Yingxu Tian, Junyi Guo, Zhongyang Sun. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1887-1912. doi: 10.3934/jimo.2020051  Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367  Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261  Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450  Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068  Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235  Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069  Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049  Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055  Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056  Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

2019 Impact Factor: 0.857

Article outline

[Back to Top]