• Previous Article
    External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms
  • MCRF Home
  • This Issue
  • Next Article
    Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations
doi: 10.3934/mcrf.2021006

Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback

Chair for Applied Analysis (Alexander von Humboldt Professorship), Friedrich-Alexander Universität Nürnberg, Cauerstr. 11, 91058 Erlangen

* Corresponding author: Christophe Zhang

Received  September 2020 Revised  November 2020 Published  March 2021

Fund Project: This work was partially supported by ANR project Finite4SoS (ANR-15-CE23-0007), the French Corps des Mines, and the Chair of Applied Analysis, Alexander von Humboldt Professorship, Friedrich-Alexander Universität Nürnberg

We use a variant the backstepping method to study the stabilization of a 1-D linear transport equation on the interval $ (0,L) $, by controlling the scalar amplitude of a piecewise regular function of the space variable in the source term. We prove that if the system is controllable in a periodic Sobolev space of order greater than $ 1 $, then the system can be stabilized exponentially in that space and, for any given decay rate, we give an explicit feedback law that achieves that decay rate. The variant of the backstepping method used here relies mainly on the spectral properties of the linear transport equation, and leads to some original technical developments that differ substantially from previous applications.

Citation: Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021006
References:
[1]

D. M. BoskovićA. Balogh and M. Krstić, Backstepping in infinite dimension for a class of parabolic distributed parameter systems, Math. Control Signals Systems, 16 (2003), 44-75.  doi: 10.1007/s00498-003-0128-6.  Google Scholar

[2]

G. Bastin and J. -M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Progress in Nonlinear Differential Equations and their Applications, vol. 88, Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-32062-5.  Google Scholar

[3]

A. Balogh and M. Krstić, Infinite dimensional backstepping–style feedback transformations for a heat equation with an arbitrary level of instability, European Journal of Control, 8 (2002), 165-175.  doi: 10.3166/ejc.8.165-175.  Google Scholar

[4]

S. Bialas, On the Lyapunov matrix equation, IEEE Trans. Automat. Control, 25 (1980), 813-814.  doi: 10.1109/TAC.1980.1102438.  Google Scholar

[5]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.  Google Scholar

[6]

P. Brunovský, A classification of linear controllable systems, Kybernetika (Prague), 6 (1970), 173-188.   Google Scholar

[7]

O. Christensen, An Introduction to Frames and Riesz Bases, 2nd edition, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-25613-9.  Google Scholar

[8]

J.-M. Coron and B. d'Andréa-Novel, Stabilization of a rotating body beam without damping, IEEE Trans. Automat. Control, 43 (1998), 608-618.  doi: 10.1109/9.668828.  Google Scholar

[9]

J.-M. CoronL. Gagnon and M. Morancey, Rapid stabilization of a linearized bilinear 1-D Schrödinger equation, J. Math. Pures Appl. (9), 115 (2018), 24-73.  doi: 10.1016/j.matpur.2017.10.006.  Google Scholar

[10]

J.-M. CoronL. Hu and G. Olive, Stabilization and controllability of first-order integro-differential hyperbolic equations, J. Funct. Anal., 271 (2016), 3554-3587.  doi: 10.1016/j.jfa.2016.08.018.  Google Scholar

[11]

J.-M. CoronL. Hu and G. Olive, Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation, Automatica J. IFAC, 84 (2017), 95-100.  doi: 10.1016/j.automatica.2017.05.013.  Google Scholar

[12]

J.-M. Coron and Q. Lü, Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right, J. Math. Pures Appl. (9), 102 (2014), 1080-1120.  doi: 10.1016/j.matpur.2014.03.004.  Google Scholar

[13]

J.-M. Coron and Q. Lü, Fredholm transform and local rapid stabilization for a Kuramoto-Sivashinsky equation, J. Differential Equations, 259 (2015), 3683-3729.  doi: 10.1016/j.jde.2015.05.001.  Google Scholar

[14]

J.-M. Coron and H.-M. Nguyen, Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach, Arch. Ration. Mech. Anal., 225 (2017), 993-1023.  doi: 10.1007/s00205-017-1119-y.  Google Scholar

[15]

J. -M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, American Mathematical Society, Providence, RI, 2007. doi: 10.1090/surv/136.  Google Scholar

[16] J.-M. Coron, Stabilization of control systems and nonlinearities, In Proceedings of the 8th International Congress on Industrial and Applied Mathematics, Higher Ed. Press, Beijing, 2015.   Google Scholar
[17]

J.-M. CoronR. VazquezM. Krstić and G. Bastin, Local exponential $H^2$ stabilization of a $2\times 2$ quasilinear hyperbolic system using backstepping, SIAM J. Control Optim., 51 (2013), 2005-2035.  doi: 10.1137/120875739.  Google Scholar

[18]

R. Datko, A linear control problem in an abstract Hilbert space, J. Differential Equations, 9 (1971), 346-359.  doi: 10.1016/0022-0396(71)90087-8.  Google Scholar

[19]

F. Dubois, N. Petit and P. Rouchon, Motion planning and nonlinear simulations for a tank containing a fluid, In 1999 European Control Conference (ECC), IEEE, (1999), 3232–3237. doi: 10.23919/ECC. 1999.7099825.  Google Scholar

[20]

L. Grafakos, Classical Fourier Analysis, vol. 2, Springer, New York, 2008.  Google Scholar

[21]

A. Hayat, Exponential stability of general 1-D quasilinear systems with source terms for the C 1 norm under boundary conditions, preprint, October 2017. https://hal.archives-ouvertes.fr/hal-01613139 Google Scholar

[22]

A. Hayat, On boundary stability of inhomogeneous $2\times2$ 1-D hyperbolic systems for the $C^1$ norm, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 82, 31 pp. doi: 10.1051/cocv/2018059.  Google Scholar

[23]

D. Kleinman, An easy way to stabilize a linear constant system, IEEE Transactions on Automatic Control, 15 (1970), 692-692.   Google Scholar

[24]

M. KrstićB.-Z. GuoA. Balogh and A. Smyshlyaev, Output-feedback stabilization of an unstable wave equation, Automatica J. IFAC, 44 (2008), 63-74.  doi: 10.1016/j.automatica.2007.05.012.  Google Scholar

[25]

V. Komornik, Rapid boundary stabilization of linear distributed systems, SIAM J. Control Optim., 35 (1997), 1591-1613.  doi: 10.1137/S0363012996301609.  Google Scholar

[26]

M. Krstić and A. Smyshlyaev, Boundary Control of PDEs, Advances in Design and Control, vol. 16, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. doi: 10.1137/1.9780898718607.  Google Scholar

[27]

M. Krstic, P. V. Kokotovic and I. Kanellakopoulos, Nonlinear and Adaptive Control Design, John Wiley & Sons, Inc., New York, NY, 1995. Google Scholar

[28]

W. H. Kwon and A. E. Pearson, A note on the algebraic matrix Riccati equation, IEEE Trans. Automatic Control, AC-22 (1977), 143-144.  doi: 10.1109/tac.1977.1101441.  Google Scholar

[29]

I. Lasiecka and R. Triggiani, Algebraic Riccati equations arising in boundary/point control: A review of theoretical and numerical results. I. Continuous case, In Perspectives in Control Theory (Sielpia, 1988), Progr. Systems Control Theory, volume 2, Birkhäuser Boston, Boston, MA, 1990, 175–210.  Google Scholar

[30]

W. J. Liu and M. Krstić, Backstepping boundary control of Burgers' equation with actuator dynamics, Systems Control Lett., 41 (2000), 291-303.  doi: 10.1016/S0167-6911(00)00068-2.  Google Scholar

[31]

W. J. Liu and M. Krstić, Boundary feedback stabilization of homogeneous equilibria in unstable fluid mixtures, Internat. J. Control, 80 (2007), 982-989.  doi: 10.1080/00207170701280895.  Google Scholar

[32]

Y. Orlov and D. Dochain, Discontinuous feedback stabilization of minimum-phase semilinear infinite-dimensional systems with application to chemical tubular reactor, IEEE Trans. Automat. Control, 47 (2002), 1293-1304.  doi: 10.1109/TAC.2002.800737.  Google Scholar

[33]

D. L. Lukes, Stabilizability and optimal control, Funkcial. Ekvac., 11 (1968), 39-50.   Google Scholar

[34]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[35]

J. L. PitarchM. RakhshanM. MardaniM. Sadeghi and C. Prada, Distributed nonlinear control of a plug-flow reactor under saturation, IFAC-PapersOnLine, 49 (2016), 87-92.  doi: 10.1016/j.ifacol.2016.10.760.  Google Scholar

[36]

R. Rebarber, Spectral assignability for distributed parameter systems with unbounded scalar control, SIAM J. Control Optim., 27 (1989), 148-169.  doi: 10.1137/0327009.  Google Scholar

[37]

D. L. Russell, Control theory of hyperbolic equations related to certain questions in harmonic analysis and spectral theory, J. Math. Anal. Appl., 40 (1972), 336-368.  doi: 10.1016/0022-247X(72)90055-8.  Google Scholar

[38]

D. L. Russell, Canonical forms and spectral determination for a class of hyperbolic distributed parameter control systems, J. Math. Anal. Appl., 62 (1978), 186-225.  doi: 10.1016/0022-247X(78)90229-9.  Google Scholar

[39]

A. SmyshlyaevE. Cerpa and M. Krstić, Boundary stabilization of a 1-D wave equation with in-domain antidamping, SIAM J. Control Optim., 48 (2010), 4014-4031.  doi: 10.1137/080742646.  Google Scholar

[40]

E. D. Sontag, Mathematical Control Theory, Texts in Applied Mathematics, vol. 6, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[41]

S. H. Sun, On spectrum distribution of completely controllable linear systems, SIAM J. Control Optim., 19 (1981), 730-743.  doi: 10.1137/0319048.  Google Scholar

[42]

D. Tsubakino, M. Krstić, and S. Hara, Backstepping control for parabolic pdes with in-domain actuation, 2012 American Control Conference (ACC), (2012), 2226–2231. doi: 10.1109/ACC. 2012.6315358.  Google Scholar

[43]

J. M. Urquiza, Rapid exponential feedback stabilization with unbounded control operators, SIAM J. Control Optim., 43 (2005), 2233-2244.  doi: 10.1137/S0363012901388452.  Google Scholar

[44]

A. Vest, Rapid stabilization in a semigroup framework, SIAM J. Control Optim., 51 (2013), 4169-4188.  doi: 10.1137/130906994.  Google Scholar

[45]

F. Woittennek, S. Q. Wang and T. Knüppel, Backstepping design for parabolic systems with in-domain actuation and Robin boundary conditions, IFAC Proceedings Volumes, 19th IFAC World Congress, 47 (2014), 5175–5180. doi: 10.3182/20140824-6-ZA-1003.02285.  Google Scholar

[46]

S. Q. Xiang, Null controllability of a linearized Korteweg–de Vries equation by backstepping approach, SIAM J. Control Optim., 57 (2019), 1493-1515.  doi: 10.1137/17M1115253.  Google Scholar

[47]

S. Q. Xiang, Small-time local stabilization for a Korteweg–de Vries equation, Systems Control Lett., 111 (2018), 64-69.  doi: 10.1016/j.sysconle.2017.11.003.  Google Scholar

[48]

X. Yu, C. Xu, H. C. Jiang, A. Ganesan and G. J. Zheng., Backstepping synthesis for feedback control of first-order hyperbolic PDEs with spatial-temporal actuation, Abstr. Appl. Anal., (2014), Art. ID 643640, 13 pp. doi: 10.1155/2014/643640.  Google Scholar

[49]

J. Zabczyk, Mathematical Control Theory, Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2008. doi: 10.1007/978-0-8176-4733-9.  Google Scholar

show all references

References:
[1]

D. M. BoskovićA. Balogh and M. Krstić, Backstepping in infinite dimension for a class of parabolic distributed parameter systems, Math. Control Signals Systems, 16 (2003), 44-75.  doi: 10.1007/s00498-003-0128-6.  Google Scholar

[2]

G. Bastin and J. -M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Progress in Nonlinear Differential Equations and their Applications, vol. 88, Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-32062-5.  Google Scholar

[3]

A. Balogh and M. Krstić, Infinite dimensional backstepping–style feedback transformations for a heat equation with an arbitrary level of instability, European Journal of Control, 8 (2002), 165-175.  doi: 10.3166/ejc.8.165-175.  Google Scholar

[4]

S. Bialas, On the Lyapunov matrix equation, IEEE Trans. Automat. Control, 25 (1980), 813-814.  doi: 10.1109/TAC.1980.1102438.  Google Scholar

[5]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.  Google Scholar

[6]

P. Brunovský, A classification of linear controllable systems, Kybernetika (Prague), 6 (1970), 173-188.   Google Scholar

[7]

O. Christensen, An Introduction to Frames and Riesz Bases, 2nd edition, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-25613-9.  Google Scholar

[8]

J.-M. Coron and B. d'Andréa-Novel, Stabilization of a rotating body beam without damping, IEEE Trans. Automat. Control, 43 (1998), 608-618.  doi: 10.1109/9.668828.  Google Scholar

[9]

J.-M. CoronL. Gagnon and M. Morancey, Rapid stabilization of a linearized bilinear 1-D Schrödinger equation, J. Math. Pures Appl. (9), 115 (2018), 24-73.  doi: 10.1016/j.matpur.2017.10.006.  Google Scholar

[10]

J.-M. CoronL. Hu and G. Olive, Stabilization and controllability of first-order integro-differential hyperbolic equations, J. Funct. Anal., 271 (2016), 3554-3587.  doi: 10.1016/j.jfa.2016.08.018.  Google Scholar

[11]

J.-M. CoronL. Hu and G. Olive, Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation, Automatica J. IFAC, 84 (2017), 95-100.  doi: 10.1016/j.automatica.2017.05.013.  Google Scholar

[12]

J.-M. Coron and Q. Lü, Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right, J. Math. Pures Appl. (9), 102 (2014), 1080-1120.  doi: 10.1016/j.matpur.2014.03.004.  Google Scholar

[13]

J.-M. Coron and Q. Lü, Fredholm transform and local rapid stabilization for a Kuramoto-Sivashinsky equation, J. Differential Equations, 259 (2015), 3683-3729.  doi: 10.1016/j.jde.2015.05.001.  Google Scholar

[14]

J.-M. Coron and H.-M. Nguyen, Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach, Arch. Ration. Mech. Anal., 225 (2017), 993-1023.  doi: 10.1007/s00205-017-1119-y.  Google Scholar

[15]

J. -M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, American Mathematical Society, Providence, RI, 2007. doi: 10.1090/surv/136.  Google Scholar

[16] J.-M. Coron, Stabilization of control systems and nonlinearities, In Proceedings of the 8th International Congress on Industrial and Applied Mathematics, Higher Ed. Press, Beijing, 2015.   Google Scholar
[17]

J.-M. CoronR. VazquezM. Krstić and G. Bastin, Local exponential $H^2$ stabilization of a $2\times 2$ quasilinear hyperbolic system using backstepping, SIAM J. Control Optim., 51 (2013), 2005-2035.  doi: 10.1137/120875739.  Google Scholar

[18]

R. Datko, A linear control problem in an abstract Hilbert space, J. Differential Equations, 9 (1971), 346-359.  doi: 10.1016/0022-0396(71)90087-8.  Google Scholar

[19]

F. Dubois, N. Petit and P. Rouchon, Motion planning and nonlinear simulations for a tank containing a fluid, In 1999 European Control Conference (ECC), IEEE, (1999), 3232–3237. doi: 10.23919/ECC. 1999.7099825.  Google Scholar

[20]

L. Grafakos, Classical Fourier Analysis, vol. 2, Springer, New York, 2008.  Google Scholar

[21]

A. Hayat, Exponential stability of general 1-D quasilinear systems with source terms for the C 1 norm under boundary conditions, preprint, October 2017. https://hal.archives-ouvertes.fr/hal-01613139 Google Scholar

[22]

A. Hayat, On boundary stability of inhomogeneous $2\times2$ 1-D hyperbolic systems for the $C^1$ norm, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 82, 31 pp. doi: 10.1051/cocv/2018059.  Google Scholar

[23]

D. Kleinman, An easy way to stabilize a linear constant system, IEEE Transactions on Automatic Control, 15 (1970), 692-692.   Google Scholar

[24]

M. KrstićB.-Z. GuoA. Balogh and A. Smyshlyaev, Output-feedback stabilization of an unstable wave equation, Automatica J. IFAC, 44 (2008), 63-74.  doi: 10.1016/j.automatica.2007.05.012.  Google Scholar

[25]

V. Komornik, Rapid boundary stabilization of linear distributed systems, SIAM J. Control Optim., 35 (1997), 1591-1613.  doi: 10.1137/S0363012996301609.  Google Scholar

[26]

M. Krstić and A. Smyshlyaev, Boundary Control of PDEs, Advances in Design and Control, vol. 16, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. doi: 10.1137/1.9780898718607.  Google Scholar

[27]

M. Krstic, P. V. Kokotovic and I. Kanellakopoulos, Nonlinear and Adaptive Control Design, John Wiley & Sons, Inc., New York, NY, 1995. Google Scholar

[28]

W. H. Kwon and A. E. Pearson, A note on the algebraic matrix Riccati equation, IEEE Trans. Automatic Control, AC-22 (1977), 143-144.  doi: 10.1109/tac.1977.1101441.  Google Scholar

[29]

I. Lasiecka and R. Triggiani, Algebraic Riccati equations arising in boundary/point control: A review of theoretical and numerical results. I. Continuous case, In Perspectives in Control Theory (Sielpia, 1988), Progr. Systems Control Theory, volume 2, Birkhäuser Boston, Boston, MA, 1990, 175–210.  Google Scholar

[30]

W. J. Liu and M. Krstić, Backstepping boundary control of Burgers' equation with actuator dynamics, Systems Control Lett., 41 (2000), 291-303.  doi: 10.1016/S0167-6911(00)00068-2.  Google Scholar

[31]

W. J. Liu and M. Krstić, Boundary feedback stabilization of homogeneous equilibria in unstable fluid mixtures, Internat. J. Control, 80 (2007), 982-989.  doi: 10.1080/00207170701280895.  Google Scholar

[32]

Y. Orlov and D. Dochain, Discontinuous feedback stabilization of minimum-phase semilinear infinite-dimensional systems with application to chemical tubular reactor, IEEE Trans. Automat. Control, 47 (2002), 1293-1304.  doi: 10.1109/TAC.2002.800737.  Google Scholar

[33]

D. L. Lukes, Stabilizability and optimal control, Funkcial. Ekvac., 11 (1968), 39-50.   Google Scholar

[34]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[35]

J. L. PitarchM. RakhshanM. MardaniM. Sadeghi and C. Prada, Distributed nonlinear control of a plug-flow reactor under saturation, IFAC-PapersOnLine, 49 (2016), 87-92.  doi: 10.1016/j.ifacol.2016.10.760.  Google Scholar

[36]

R. Rebarber, Spectral assignability for distributed parameter systems with unbounded scalar control, SIAM J. Control Optim., 27 (1989), 148-169.  doi: 10.1137/0327009.  Google Scholar

[37]

D. L. Russell, Control theory of hyperbolic equations related to certain questions in harmonic analysis and spectral theory, J. Math. Anal. Appl., 40 (1972), 336-368.  doi: 10.1016/0022-247X(72)90055-8.  Google Scholar

[38]

D. L. Russell, Canonical forms and spectral determination for a class of hyperbolic distributed parameter control systems, J. Math. Anal. Appl., 62 (1978), 186-225.  doi: 10.1016/0022-247X(78)90229-9.  Google Scholar

[39]

A. SmyshlyaevE. Cerpa and M. Krstić, Boundary stabilization of a 1-D wave equation with in-domain antidamping, SIAM J. Control Optim., 48 (2010), 4014-4031.  doi: 10.1137/080742646.  Google Scholar

[40]

E. D. Sontag, Mathematical Control Theory, Texts in Applied Mathematics, vol. 6, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[41]

S. H. Sun, On spectrum distribution of completely controllable linear systems, SIAM J. Control Optim., 19 (1981), 730-743.  doi: 10.1137/0319048.  Google Scholar

[42]

D. Tsubakino, M. Krstić, and S. Hara, Backstepping control for parabolic pdes with in-domain actuation, 2012 American Control Conference (ACC), (2012), 2226–2231. doi: 10.1109/ACC. 2012.6315358.  Google Scholar

[43]

J. M. Urquiza, Rapid exponential feedback stabilization with unbounded control operators, SIAM J. Control Optim., 43 (2005), 2233-2244.  doi: 10.1137/S0363012901388452.  Google Scholar

[44]

A. Vest, Rapid stabilization in a semigroup framework, SIAM J. Control Optim., 51 (2013), 4169-4188.  doi: 10.1137/130906994.  Google Scholar

[45]

F. Woittennek, S. Q. Wang and T. Knüppel, Backstepping design for parabolic systems with in-domain actuation and Robin boundary conditions, IFAC Proceedings Volumes, 19th IFAC World Congress, 47 (2014), 5175–5180. doi: 10.3182/20140824-6-ZA-1003.02285.  Google Scholar

[46]

S. Q. Xiang, Null controllability of a linearized Korteweg–de Vries equation by backstepping approach, SIAM J. Control Optim., 57 (2019), 1493-1515.  doi: 10.1137/17M1115253.  Google Scholar

[47]

S. Q. Xiang, Small-time local stabilization for a Korteweg–de Vries equation, Systems Control Lett., 111 (2018), 64-69.  doi: 10.1016/j.sysconle.2017.11.003.  Google Scholar

[48]

X. Yu, C. Xu, H. C. Jiang, A. Ganesan and G. J. Zheng., Backstepping synthesis for feedback control of first-order hyperbolic PDEs with spatial-temporal actuation, Abstr. Appl. Anal., (2014), Art. ID 643640, 13 pp. doi: 10.1155/2014/643640.  Google Scholar

[49]

J. Zabczyk, Mathematical Control Theory, Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2008. doi: 10.1007/978-0-8176-4733-9.  Google Scholar

[1]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

[2]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[3]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[4]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021027

[5]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[6]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[7]

Zemer Kosloff, Terry Soo. The orbital equivalence of Bernoulli actions and their Sinai factors. Journal of Modern Dynamics, 2021, 17: 145-182. doi: 10.3934/jmd.2021005

[8]

Peter H. van der Kamp, David I. McLaren, G. R. W. Quispel. Generalised Manin transformations and QRT maps. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021009

[9]

Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021081

[10]

Zheng Liu, Tianxiao Wang. A class of stochastic Fredholm-algebraic equations and applications in finance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3879-3903. doi: 10.3934/dcdsb.2020267

[11]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[12]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[13]

Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037

[14]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

[15]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[16]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[17]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[18]

Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021010

[19]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[20]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

2019 Impact Factor: 0.857

Article outline

[Back to Top]