doi: 10.3934/mcrf.2021007

Optimal control of the transmission rate in compartmental epidemics

Dipartimento di Scienze Matematiche, Informatiche e Fisiche (DMIF), Università di Udine, via delle Scienze 206, 33100 Udine, Italy

Received  September 2020 Revised  December 2020 Published  March 2021

Fund Project: Partially supported by PRID project PRIDEN

We introduce a general system of ordinary differential equations that includes some classical and recent models for the epidemic spread in a closed population without vital dynamic in a finite time horizon. The model is vectorial, in the sense that it accounts for a vector valued state function whose components represent various kinds of exposed/infected subpopulations, with a corresponding vector of control functions possibly different for any subpopulation. In the general setting, we prove well-posedness and positivity of the initial value problem for the system of state equations and the existence of solutions to the optimal control problem of the coefficients of the nonlinear part of the system, under a very general cost functional. We also prove the uniqueness of the optimal solution for a small time horizon when the cost is superlinear in all control variables with possibly different exponents in the interval $ (1,2] $. We consider then a linear cost in the control variables and study the singular arcs. Full details are given in the case $ n = 1 $ and the results are illustrated by the aid of some numerical simulations.

Citation: Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021007
References:
[1] M. R. M. Anderson, Infectious Diseases of Humans, Oxford University Press, London, 1991.   Google Scholar
[2]

H. Behncke, Optimal control of deterministic epidemics, Optimal Control Appl. Methods, 21 (2000), 269-285.  doi: 10.1002/oca.678.  Google Scholar

[3]

W. Bock and Y. Jayathunga, Optimal control and basic reproduction numbers for a compartmental spatial multipatch dengue model, Math. Methods Appl. Sci., 41 (2018), 3231-3245.  doi: 10.1002/mma.4812.  Google Scholar

[4]

J. Bonnans, Frederic, D. Giorgi, V. Grelard, B. Heymann, S. Maindrault, P. Martinon, O. Tissot and J. Liu, Bocop-A collection of examples, Technical report, INRIA, 2017. Google Scholar

[5]

B. Bonnard and M. Chyba, Singular trajectories and their role in control theory, Mathématiques & Applications (Berlin) Mathematics & Applications, vol. 40, Springer-Verlag, Berlin, 2003.  Google Scholar

[6]

A. E. Bryson, Jr. and Y. C. Ho, Applied Optimal Control, Hemisphere Publishing Corp. Washington, D. C., John Wiley & Sons, New York-London-Sydney, 1975.  Google Scholar

[7]

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, vol. 264, Springer, London, 2013. doi: 10.1007/978-1-4471-4820-3.  Google Scholar

[8]

H. J. A. Diekmann, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation., Wiley, New York, 2000. Google Scholar

[9]

L. FengM. Kumar and L. Mark, An optimal control theory approach to non-pharmaceutical interventions, BMC Infectious Diseases, 10 (2010), 1471-2334.   Google Scholar

[10]

K. R. Fister, S. Lenhart and J. S. McNally, Optimizing chemotherapy in an HIV model, Electron. J. Differential Equations, (1998), No. 32, 12 pp.  Google Scholar

[11]

I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: $L^p$ Spaces, Springer Monographs in Mathematics, Springer, New York, 2007.  Google Scholar

[12]

H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models, Math. Biosci. Eng., 6 (2009), 469-492.  doi: 10.3934/mbe.2009.6.469.  Google Scholar

[13]

S. R. Gani and S. Halawar, Optimal control analysis of deterministic and stochastic epidemic model with media awareness programs, Int. J. Optim. Control. Theor. Appl. IJOCTA, 9 (2019), 24-35.  doi: 10.11121/ijocta.01.2019.00423.  Google Scholar

[14]

G. GiordanoF. BlanchiniR. BrunoP. ColaneriA. Di FilippoA. Di Matteo and M. Colaneri, Modelling the covid-19 epidemic and implementation of population-wide interventions in Italy, Nat. Med., 26 (2020), 855-860.  doi: 10.1038/s41591-020-0883-7.  Google Scholar

[15]

A. B. Gumel, Modelling strategies for controlling sars outbreaks, Proc. R. Soc. Lond. B., 271 (2004), 2223-2232.   Google Scholar

[16]

J. K. Hale, Ordinary Differential Equations, 2nd edition, Robert E. Krieger Publishing Co., Inc., Huntington, N. Y., 1980.  Google Scholar

[17]

E. Hansen and T. Day, Optimal control of epidemics with limited resources, J. Math. Biol., 62 (2011), 423-451.  doi: 10.1007/s00285-010-0341-0.  Google Scholar

[18]

G. Herzog and R. Redheffer, Nonautonomous SEIRS and Thron models for epidemiology and cell biology, Nonlinear Anal. Real World Appl., 5 (2004), 33-44.  doi: 10.1016/S1468-1218(02)00075-5.  Google Scholar

[19]

H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.  doi: 10.1137/S0036144500371907.  Google Scholar

[20]

L. O. Jay, Lobatto methods, in Encyclopedia of Applied and Computational Mathematics, Numerical Analysis of Ordinary Differential Equations, Springer-The Language of Science, 2015. doi: 10.1007/978-3-540-70529-1.  Google Scholar

[21]

K. Kandhway and J. Kuri, How to run a campaign: Optimal control of SIS and SIR information epidemics, Appl. Math. Comput., 231 (2014), 79-92.  doi: 10.1016/j.amc.2013.12.164.  Google Scholar

[22]

W. O. Kermack and A. G. McKendrick, A Contribution to the Mathematical Theory of Epidemics, Proceedings of the Royal Society of London Series A, 115 (1927), 700-721.   Google Scholar

[23]

T. Kruse and P. Strack, Optimal control of an epidemic through social distancing, (2020), 28 pp. https://ssrn.com/abstract=3581295 Google Scholar

[24]

U. Ledzewicz and H. Schättler, On optimal singular controls for a general SIR-model with vaccination and treatment, Discrete Contin. Dyn. Syst., (2011), 981-990.  Google Scholar

[25]

J. LeeJ. Kim and H.-D. Kwon, Optimal control of an influenza model with seasonal forcing and age-dependent transmission rates, J. Theoret. Biol., 317 (2013), 310-320.  doi: 10.1016/j.jtbi.2012.10.032.  Google Scholar

[26]

S. Maharaj and A. Kleczkowski, Controlling epidemic spread by social distancing: Do it well or not at all, BMC Public Health, 12 (2012), Art. No. 679. doi: 10.1186/1471-2458-12-679.  Google Scholar

[27]

H. Schättler and U. Ledzewicz, Geometric Optimal Control, Interdisciplinary Applied Mathematics, vol. 38, Springer, New York, 2012. doi: 10.1007/978-1-4614-3834-2.  Google Scholar

[28]

O. Sharomi and T. Malik, Optimal control in epidemiology, Ann. Oper. Res., 251 (2017), 55-71.  doi: 10.1007/s10479-015-1834-4.  Google Scholar

[29]

I. S. Team Commands, Bocop: an open source toolbox for optimal control, 2017. http://bocop.org Google Scholar

[30]

C. Tsay, F. Lejarza, M. A. Stadtherr and M. Baldea., Modeling, state estimation, and optimal control for the us covid-19 outbreak, Sci. Rep., 10 (2020), Art. No. 10711. doi: 10.1038/s41598-020-67459-8.  Google Scholar

[31]

X. Yan and Z. Yun, Control of epidemics by quarantine and isolation strategies in highly mobile populations, Int. J. Inf. Syst. Sci., 5 (2009), 271-286.   Google Scholar

[32]

X. Yan and Y. Zou, Optimal and sub-optimal quarantine and isolation control in SARS epidemics, Math. Comput. Modelling, 47 (2008), 235-245.  doi: 10.1016/j.mcm.2007.04.003.  Google Scholar

show all references

References:
[1] M. R. M. Anderson, Infectious Diseases of Humans, Oxford University Press, London, 1991.   Google Scholar
[2]

H. Behncke, Optimal control of deterministic epidemics, Optimal Control Appl. Methods, 21 (2000), 269-285.  doi: 10.1002/oca.678.  Google Scholar

[3]

W. Bock and Y. Jayathunga, Optimal control and basic reproduction numbers for a compartmental spatial multipatch dengue model, Math. Methods Appl. Sci., 41 (2018), 3231-3245.  doi: 10.1002/mma.4812.  Google Scholar

[4]

J. Bonnans, Frederic, D. Giorgi, V. Grelard, B. Heymann, S. Maindrault, P. Martinon, O. Tissot and J. Liu, Bocop-A collection of examples, Technical report, INRIA, 2017. Google Scholar

[5]

B. Bonnard and M. Chyba, Singular trajectories and their role in control theory, Mathématiques & Applications (Berlin) Mathematics & Applications, vol. 40, Springer-Verlag, Berlin, 2003.  Google Scholar

[6]

A. E. Bryson, Jr. and Y. C. Ho, Applied Optimal Control, Hemisphere Publishing Corp. Washington, D. C., John Wiley & Sons, New York-London-Sydney, 1975.  Google Scholar

[7]

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, vol. 264, Springer, London, 2013. doi: 10.1007/978-1-4471-4820-3.  Google Scholar

[8]

H. J. A. Diekmann, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation., Wiley, New York, 2000. Google Scholar

[9]

L. FengM. Kumar and L. Mark, An optimal control theory approach to non-pharmaceutical interventions, BMC Infectious Diseases, 10 (2010), 1471-2334.   Google Scholar

[10]

K. R. Fister, S. Lenhart and J. S. McNally, Optimizing chemotherapy in an HIV model, Electron. J. Differential Equations, (1998), No. 32, 12 pp.  Google Scholar

[11]

I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: $L^p$ Spaces, Springer Monographs in Mathematics, Springer, New York, 2007.  Google Scholar

[12]

H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models, Math. Biosci. Eng., 6 (2009), 469-492.  doi: 10.3934/mbe.2009.6.469.  Google Scholar

[13]

S. R. Gani and S. Halawar, Optimal control analysis of deterministic and stochastic epidemic model with media awareness programs, Int. J. Optim. Control. Theor. Appl. IJOCTA, 9 (2019), 24-35.  doi: 10.11121/ijocta.01.2019.00423.  Google Scholar

[14]

G. GiordanoF. BlanchiniR. BrunoP. ColaneriA. Di FilippoA. Di Matteo and M. Colaneri, Modelling the covid-19 epidemic and implementation of population-wide interventions in Italy, Nat. Med., 26 (2020), 855-860.  doi: 10.1038/s41591-020-0883-7.  Google Scholar

[15]

A. B. Gumel, Modelling strategies for controlling sars outbreaks, Proc. R. Soc. Lond. B., 271 (2004), 2223-2232.   Google Scholar

[16]

J. K. Hale, Ordinary Differential Equations, 2nd edition, Robert E. Krieger Publishing Co., Inc., Huntington, N. Y., 1980.  Google Scholar

[17]

E. Hansen and T. Day, Optimal control of epidemics with limited resources, J. Math. Biol., 62 (2011), 423-451.  doi: 10.1007/s00285-010-0341-0.  Google Scholar

[18]

G. Herzog and R. Redheffer, Nonautonomous SEIRS and Thron models for epidemiology and cell biology, Nonlinear Anal. Real World Appl., 5 (2004), 33-44.  doi: 10.1016/S1468-1218(02)00075-5.  Google Scholar

[19]

H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.  doi: 10.1137/S0036144500371907.  Google Scholar

[20]

L. O. Jay, Lobatto methods, in Encyclopedia of Applied and Computational Mathematics, Numerical Analysis of Ordinary Differential Equations, Springer-The Language of Science, 2015. doi: 10.1007/978-3-540-70529-1.  Google Scholar

[21]

K. Kandhway and J. Kuri, How to run a campaign: Optimal control of SIS and SIR information epidemics, Appl. Math. Comput., 231 (2014), 79-92.  doi: 10.1016/j.amc.2013.12.164.  Google Scholar

[22]

W. O. Kermack and A. G. McKendrick, A Contribution to the Mathematical Theory of Epidemics, Proceedings of the Royal Society of London Series A, 115 (1927), 700-721.   Google Scholar

[23]

T. Kruse and P. Strack, Optimal control of an epidemic through social distancing, (2020), 28 pp. https://ssrn.com/abstract=3581295 Google Scholar

[24]

U. Ledzewicz and H. Schättler, On optimal singular controls for a general SIR-model with vaccination and treatment, Discrete Contin. Dyn. Syst., (2011), 981-990.  Google Scholar

[25]

J. LeeJ. Kim and H.-D. Kwon, Optimal control of an influenza model with seasonal forcing and age-dependent transmission rates, J. Theoret. Biol., 317 (2013), 310-320.  doi: 10.1016/j.jtbi.2012.10.032.  Google Scholar

[26]

S. Maharaj and A. Kleczkowski, Controlling epidemic spread by social distancing: Do it well or not at all, BMC Public Health, 12 (2012), Art. No. 679. doi: 10.1186/1471-2458-12-679.  Google Scholar

[27]

H. Schättler and U. Ledzewicz, Geometric Optimal Control, Interdisciplinary Applied Mathematics, vol. 38, Springer, New York, 2012. doi: 10.1007/978-1-4614-3834-2.  Google Scholar

[28]

O. Sharomi and T. Malik, Optimal control in epidemiology, Ann. Oper. Res., 251 (2017), 55-71.  doi: 10.1007/s10479-015-1834-4.  Google Scholar

[29]

I. S. Team Commands, Bocop: an open source toolbox for optimal control, 2017. http://bocop.org Google Scholar

[30]

C. Tsay, F. Lejarza, M. A. Stadtherr and M. Baldea., Modeling, state estimation, and optimal control for the us covid-19 outbreak, Sci. Rep., 10 (2020), Art. No. 10711. doi: 10.1038/s41598-020-67459-8.  Google Scholar

[31]

X. Yan and Z. Yun, Control of epidemics by quarantine and isolation strategies in highly mobile populations, Int. J. Inf. Syst. Sci., 5 (2009), 271-286.   Google Scholar

[32]

X. Yan and Y. Zou, Optimal and sub-optimal quarantine and isolation control in SARS epidemics, Math. Comput. Modelling, 47 (2008), 235-245.  doi: 10.1016/j.mcm.2007.04.003.  Google Scholar

Figure 5.  $ J_{LL} $ with $ {\bar{u}} = 0.1 $
Figure 1.  $ J_{QQ} $ with $ {\bar{u}} = 0.08 $
Figure 2.  $ J_{QQ} $ with $ {\bar{u}} = 0.04 $
Figure 3.  $ J_{QL} $ with $ {\bar{u}} = 0.1 $
Figure 4.  $ J_{QL} $ with $ {\bar{u}} = 0.08 $
[1]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[2]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[3]

Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215

[4]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[5]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[6]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[7]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[8]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[9]

Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021022

[10]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

[11]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[12]

Jaouad Danane. Optimal control of viral infection model with saturated infection rate. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 363-375. doi: 10.3934/naco.2020031

[13]

Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39.

[14]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[15]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[16]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[17]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

[18]

Iman Malmir. Caputo fractional derivative operational matrices of legendre and chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021013

[19]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[20]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032

2019 Impact Factor: 0.857

Article outline

Figures and Tables

[Back to Top]