\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Tracking aircraft trajectories in the presence of wind disturbances

  • * Corresponding author: V. Turova

    * Corresponding author: V. Turova 
The work has been supported by the DFG grant TU427/2-2 and HO4190/8-2
Abstract / Introduction Full Text(HTML) Figure(15) Related Papers Cited by
  • A method of path following, utilized in the theory of position differential games as a tool for establishing theoretical results, is adopted in this paper for tracking aircraft trajectories under windshear conditions. It is interesting to note that reference trajectories, obtained as solutions of optimal control problems with zero wind, can very often be tracked in the presence of rather severe wind disturbances. This is shown in the present paper for rather realistic and highly nonlinear models of aircraft dynamics.

    Mathematics Subject Classification: Primary: 49N70, 49N90; Secondary: 70Q05, 34D99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Tracking of the landing trajectory in the case of a Dryden disturbance model with the characteristic value of $30\, \mathrm{m} / \mathrm{s}$. The black line presents the aircraft motion, and the grey line shows the reference trajectory

    Figure 2.  The angle $ \gamma_K\,\hbox[\text{deg}] $ in the case of a Dryden disturbance model with the characteristic value of 30 $\mathrm{m} / \mathrm{s}$. In the upper plot the black line corresponds to the aircraft motion, and the grey line stands for the reference trajectory. The solid line in the lower plot shows the absolute tracking error using a semi-logarithmic scale

    Figure 3.  The angle $ \chi_K\,\hbox[\text{deg}] $ in the case of a Dryden disturbance model with the characteristic value of 30 $\mathrm{m} / \mathrm{s}$. In the upper plot the black line corresponds to the aircraft motion, and the grey line stands for the reference trajectory. The solid line in the lower plot shows the absolute tracking error using a semi-logarithmic scale

    Figure 4.  The velocity $ V_K\,[\mathrm{m} / \mathrm{s}] $ in the case of a Dryden disturbance model with the characteristic value of 30 $\mathrm{m} / \mathrm{s}$. In the upper plot the black line corresponds to the aircraft motion, and the grey line stands for the reference trajectory. The solid line in the lower plot shows the absolute tracking error using a semi-logarithmic scale

    Figure 5.  The wind components $ W_x\,[\mathrm{m} / \mathrm{s}] $, $ W_y\,[\mathrm{m} / \mathrm{s}] $, and $ W_z\,[\mathrm{m} / \mathrm{s}] $ in the case of a Dryden disturbance model with the characteristic value of $ 30\, \mathrm{m} / \mathrm{s} $

    Figure 6.  Tracking of the landing trajectory in the case of a Dryden disturbance model with the characteristic value of 45 $\mathrm{m} / \mathrm{s}$. The black line presents the aircraft motion, and the grey line shows the reference trajectory

    Figure 7.  The angle $ \gamma_K\,\hbox[\text{deg}] $ in the case of a Dryden disturbance model with the characteristic value of 45 $\mathrm{m} / \mathrm{s}$. In the upper plot the black line corresponds to the aircraft motion, and the grey line stands for the reference trajectory. The solid line in the lower plot shows the absolute tracking error using a semi-logarithmic scale

    Figure 8.  The angle $ \chi_K\,\hbox[\text{deg}] $ in the case of a Dryden disturbance model with the characteristic value of 45 $\mathrm{m} / \mathrm{s}$. In the upper plot the black line corresponds to the aircraft motion, and the grey line stands for the reference trajectory. The solid line in the lower plot shows the absolute tracking error using a semi-logarithmic scale

    Figure 9.  The velocity $ V_K\,[\mathrm{m} / \mathrm{s}] $ in the case of a Dryden disturbance model with the characteristic value of 45 $\mathrm{m} / \mathrm{s}$. In the upper plot the black line corresponds to the aircraft motion, and the grey line stands for the reference trajectory. The solid line in the lower plot shows the absolute tracking error using a semi-logarithmic scale

    Figure 10.  The wind components $ W_x\,[\mathrm{m} / \mathrm{s}] $, $ W_y\,[\mathrm{m} / \mathrm{s}] $, and $ W_z\,[\mathrm{m} / \mathrm{s}] $ in the case of a Dryden disturbance model with the characteristic value of $ 45\, \mathrm{m} / \mathrm{s} $

    Figure 11.  The kinematic velocity $ V_K\,[\mathrm{m} / \mathrm{s}] $ for the case of repulsive disturbance, see (24). The straight line at $ V_K = 150\,\mathrm{m} / \mathrm{s} $ corresponds to the reference

    Figure 12.  The angle $ \gamma_K\,\hbox[\text{deg}] $ for the case of repulsive disturbance, see (24). The straight line at $ \gamma_K = 0\,\text{deg} $ corresponds to the reference

    Figure 13.  The angle $ \chi_K\,\hbox[\text{deg}] $ for the case of repulsive disturbance, see (24). The straight line at $ \chi_K = 0\,\text{deg} $ corresponds to the reference

    Figure 14.  The position component $ y_N\,[{\rm{m}}] $ for the case of repulsive disturbance, see (24). The straight line at $ y_N = 0\,{\rm{m}} $ corresponds to the reference

    Figure 15.  The altitude $ h = -z_N\,[{\rm{m}}] $ for the case of repulsive disturbance, see (24). The straight line at $ h = 5000\,{\rm{m}} $ corresponds to the reference

  • [1] J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Advances in Design and Control, 19. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010. doi: 10.1137/1.9780898718577.
    [2] N. Botkin, J. Diepolder, V. Turova, M. Bittner and F. Holzapfel, Viability approach to aircraft control in windshear conditions, in Advances in Dynamic and Mean Field Games (eds. J. Apaloo and B. Viscolani), Birkhäuser, (2017), 325–343. doi: 10.1007/978-3-319-70619-1.
    [3] N. BotkinV. TurovaJ. DiepolderM. Bittner and F. Holzapfel, Aircraft control during cruise flight in windshear conditions: Viability approach, Dynamic Games and Applications, 7 (2017), 594-608.  doi: 10.1007/s13235-017-0215-9.
    [4] H. Bouadi and F. Mora-Camino, Aircraft trajectory tracking by nonlinear spatial inversion, in AIAA Guidance, Navigation, and Control Conference, Minneapolis, Minnesota, August (2012), 13–16. doi: 10.2514/6.2012-4613.
    [5] R. Brockhaus, W. Alles and R. Luckner, Flugregelung, Springer, 2011.
    [6] G. Brüning, X. Hafer and G. Sachs, Flugleistungen, 2$^{nd}$ edition, Springer, 1986. doi: 10.1007/978-3-662-07259-2.
    [7] C. R. Chalk, T. P. Neal, T. M. Harris, F. E. Pritchard and R. J. Woodcock, Background Information and User Guide for Mil-F-8785B (ASG), 'Military Specification-Flying Qualities of Piloted Airplanes', Cornell Aeronautical Lab Inc Buffalo Ny, 1969.
    [8] J. Diepolder, P. Piprek, N. Botkin, V. Turova and F. Holzapfel, A robust aircraft control approach in the presence of wind using viability theory, in 2017 Australian and New Zealand Control Conference (ANZCC), IEEE, (2017), 155–160. doi: 10.1109/ANZCC.2017.8298503.
    [9] A. Farooq and D. J. N. Limebeer, Path following of optimal trajectories using preview control, in Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, (2005), 2787–2792. doi: 10.1109/CDC.2005.1582585.
    [10] F. Fisch, Development of a Framework for the Solution of High-Fidelity Trajectory Optimization Problems and Bilevel Optimal Control Problems, Ph.D. thesis, Chair of Flight System Dynamics, Technical University of Munich, 2011.
    [11] N. N. Krasovski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over l} }}$ and A. I. Subbotin, Game-Theoretical Control Problems, Springer-Verlag, New York, 1988.
    [12] Y. S. Osipov and A. V. Kryazhimskiy, Inverse Problems for Ordinary Differential Equations: Dynamical Solutions, Gordon and Breach Science Publishers, Basel, 1995.
    [13] A. V. Kryazhimskiy and V. I. Maksimov, Resource-saving tracking problem with infinite time horizon, Differential Equations, 47 (2011), 1004-1013.  doi: 10.1134/S001226611107010X.
    [14] A. V. Kryazhimskii and V. I. Maksimov, On combination of the processes of reconstruction and guaranteeing control, Automation and Remote Control, 74 (2013), 1235-1248.  doi: 10.1134/S0005117913080018.
    [15] G. LeitmannS. Pandey and E. Ryan, Adaptive control of aircraft in windshear, Int. Journal of Robust and Nonlinear Control, 3 (1993), 133-153.  doi: 10.1002/rnc.4590030206.
    [16] I. Lugo-CárdenasS. Salazar and R. Lozano, Lyapunov based 3D path following kinematic controller for a fixed wing UAV, IFAC-PapersOnLine, 50 (2017), 15946-15951.  doi: 10.1016/j.ifacol.2017.08.1747.
    [17] V. I. Maksimov, The tracking of the trajectory of a dynamical system, J. Appl. Math. Mech., 75 (2011), 667-674.  doi: 10.1016/j.jappmathmech.2012.01.007.
    [18] V. I. Maksimov, Differential guidance game with incomplete information on the state coordinates and unknown initial state, Differential Equations, 51 (2015), 1656-1665.  doi: 10.1134/S0012266115120137.
    [19] A. Miele, T. Wang and W. W. Melvin, Optimization and gamma/theta guidance of flight trajectories in a windshear, in ICAS, Congress, 15th, London, England, September 7-12, 1986, Proceedings Volume 2,878–899.
    [20] J. -J. E. Slotine and W. Li, Applied Nonlinear Control, Taipei : Prentice Education Taiwan Ltd., 2005.
    [21] A. Wächter and L. T. Biegler, On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.  doi: 10.1007/s10107-004-0559-y.
  • 加载中
Open Access Under a Creative Commons license

Figures(15)

SHARE

Article Metrics

HTML views(2109) PDF downloads(541) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return