doi: 10.3934/mcrf.2021010

Tracking aircraft trajectories in the presence of wind disturbances

1. 

Technische Universität München, Department of Mathematics, Boltzmannstr. 3, 85748 Garching near Munich, Germany

2. 

Technische Universität München, Institute of Flight System Dynamics, Boltzmannstr. 15, 85748 Garching near Munich, Germany

* Corresponding author: V. Turova

Received  March 2019 Revised  July 2020 Published  March 2021

Fund Project: The work has been supported by the DFG grant TU427/2-2 and HO4190/8-2

A method of path following, utilized in the theory of position differential games as a tool for establishing theoretical results, is adopted in this paper for tracking aircraft trajectories under windshear conditions. It is interesting to note that reference trajectories, obtained as solutions of optimal control problems with zero wind, can very often be tracked in the presence of rather severe wind disturbances. This is shown in the present paper for rather realistic and highly nonlinear models of aircraft dynamics.

Citation: Nikolai Botkin, Varvara Turova, Barzin Hosseini, Johannes Diepolder, Florian Holzapfel. Tracking aircraft trajectories in the presence of wind disturbances. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021010
References:
[1]

J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Advances in Design and Control, 19. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010. doi: 10.1137/1.9780898718577.  Google Scholar

[2]

N. Botkin, J. Diepolder, V. Turova, M. Bittner and F. Holzapfel, Viability approach to aircraft control in windshear conditions, in Advances in Dynamic and Mean Field Games (eds. J. Apaloo and B. Viscolani), Birkhäuser, (2017), 325–343. doi: 10.1007/978-3-319-70619-1.  Google Scholar

[3]

N. BotkinV. TurovaJ. DiepolderM. Bittner and F. Holzapfel, Aircraft control during cruise flight in windshear conditions: Viability approach, Dynamic Games and Applications, 7 (2017), 594-608.  doi: 10.1007/s13235-017-0215-9.  Google Scholar

[4]

H. Bouadi and F. Mora-Camino, Aircraft trajectory tracking by nonlinear spatial inversion, in AIAA Guidance, Navigation, and Control Conference, Minneapolis, Minnesota, August (2012), 13–16. doi: 10.2514/6.2012-4613.  Google Scholar

[5]

R. Brockhaus, W. Alles and R. Luckner, Flugregelung, Springer, 2011. Google Scholar

[6]

G. Brüning, X. Hafer and G. Sachs, Flugleistungen, 2$^{nd}$ edition, Springer, 1986. doi: 10.1007/978-3-662-07259-2.  Google Scholar

[7]

C. R. Chalk, T. P. Neal, T. M. Harris, F. E. Pritchard and R. J. Woodcock, Background Information and User Guide for Mil-F-8785B (ASG), 'Military Specification-Flying Qualities of Piloted Airplanes', Cornell Aeronautical Lab Inc Buffalo Ny, 1969. Google Scholar

[8]

J. Diepolder, P. Piprek, N. Botkin, V. Turova and F. Holzapfel, A robust aircraft control approach in the presence of wind using viability theory, in 2017 Australian and New Zealand Control Conference (ANZCC), IEEE, (2017), 155–160. doi: 10.1109/ANZCC.2017.8298503.  Google Scholar

[9]

A. Farooq and D. J. N. Limebeer, Path following of optimal trajectories using preview control, in Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, (2005), 2787–2792. doi: 10.1109/CDC.2005.1582585.  Google Scholar

[10]

F. Fisch, Development of a Framework for the Solution of High-Fidelity Trajectory Optimization Problems and Bilevel Optimal Control Problems, Ph.D. thesis, Chair of Flight System Dynamics, Technical University of Munich, 2011. Google Scholar

[11]

N. N. Krasovski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over l} }}$ and A. I. Subbotin, Game-Theoretical Control Problems, Springer-Verlag, New York, 1988.  Google Scholar

[12]

Y. S. Osipov and A. V. Kryazhimskiy, Inverse Problems for Ordinary Differential Equations: Dynamical Solutions, Gordon and Breach Science Publishers, Basel, 1995.  Google Scholar

[13]

A. V. Kryazhimskiy and V. I. Maksimov, Resource-saving tracking problem with infinite time horizon, Differential Equations, 47 (2011), 1004-1013.  doi: 10.1134/S001226611107010X.  Google Scholar

[14]

A. V. Kryazhimskii and V. I. Maksimov, On combination of the processes of reconstruction and guaranteeing control, Automation and Remote Control, 74 (2013), 1235-1248.  doi: 10.1134/S0005117913080018.  Google Scholar

[15]

G. LeitmannS. Pandey and E. Ryan, Adaptive control of aircraft in windshear, Int. Journal of Robust and Nonlinear Control, 3 (1993), 133-153.  doi: 10.1002/rnc.4590030206.  Google Scholar

[16]

I. Lugo-CárdenasS. Salazar and R. Lozano, Lyapunov based 3D path following kinematic controller for a fixed wing UAV, IFAC-PapersOnLine, 50 (2017), 15946-15951.  doi: 10.1016/j.ifacol.2017.08.1747.  Google Scholar

[17]

V. I. Maksimov, The tracking of the trajectory of a dynamical system, J. Appl. Math. Mech., 75 (2011), 667-674.  doi: 10.1016/j.jappmathmech.2012.01.007.  Google Scholar

[18]

V. I. Maksimov, Differential guidance game with incomplete information on the state coordinates and unknown initial state, Differential Equations, 51 (2015), 1656-1665.  doi: 10.1134/S0012266115120137.  Google Scholar

[19]

A. Miele, T. Wang and W. W. Melvin, Optimization and gamma/theta guidance of flight trajectories in a windshear, in ICAS, Congress, 15th, London, England, September 7-12, 1986, Proceedings Volume 2,878–899. Google Scholar

[20]

J. -J. E. Slotine and W. Li, Applied Nonlinear Control, Taipei : Prentice Education Taiwan Ltd., 2005. Google Scholar

[21]

A. Wächter and L. T. Biegler, On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.  doi: 10.1007/s10107-004-0559-y.  Google Scholar

show all references

References:
[1]

J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Advances in Design and Control, 19. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010. doi: 10.1137/1.9780898718577.  Google Scholar

[2]

N. Botkin, J. Diepolder, V. Turova, M. Bittner and F. Holzapfel, Viability approach to aircraft control in windshear conditions, in Advances in Dynamic and Mean Field Games (eds. J. Apaloo and B. Viscolani), Birkhäuser, (2017), 325–343. doi: 10.1007/978-3-319-70619-1.  Google Scholar

[3]

N. BotkinV. TurovaJ. DiepolderM. Bittner and F. Holzapfel, Aircraft control during cruise flight in windshear conditions: Viability approach, Dynamic Games and Applications, 7 (2017), 594-608.  doi: 10.1007/s13235-017-0215-9.  Google Scholar

[4]

H. Bouadi and F. Mora-Camino, Aircraft trajectory tracking by nonlinear spatial inversion, in AIAA Guidance, Navigation, and Control Conference, Minneapolis, Minnesota, August (2012), 13–16. doi: 10.2514/6.2012-4613.  Google Scholar

[5]

R. Brockhaus, W. Alles and R. Luckner, Flugregelung, Springer, 2011. Google Scholar

[6]

G. Brüning, X. Hafer and G. Sachs, Flugleistungen, 2$^{nd}$ edition, Springer, 1986. doi: 10.1007/978-3-662-07259-2.  Google Scholar

[7]

C. R. Chalk, T. P. Neal, T. M. Harris, F. E. Pritchard and R. J. Woodcock, Background Information and User Guide for Mil-F-8785B (ASG), 'Military Specification-Flying Qualities of Piloted Airplanes', Cornell Aeronautical Lab Inc Buffalo Ny, 1969. Google Scholar

[8]

J. Diepolder, P. Piprek, N. Botkin, V. Turova and F. Holzapfel, A robust aircraft control approach in the presence of wind using viability theory, in 2017 Australian and New Zealand Control Conference (ANZCC), IEEE, (2017), 155–160. doi: 10.1109/ANZCC.2017.8298503.  Google Scholar

[9]

A. Farooq and D. J. N. Limebeer, Path following of optimal trajectories using preview control, in Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, (2005), 2787–2792. doi: 10.1109/CDC.2005.1582585.  Google Scholar

[10]

F. Fisch, Development of a Framework for the Solution of High-Fidelity Trajectory Optimization Problems and Bilevel Optimal Control Problems, Ph.D. thesis, Chair of Flight System Dynamics, Technical University of Munich, 2011. Google Scholar

[11]

N. N. Krasovski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over l} }}$ and A. I. Subbotin, Game-Theoretical Control Problems, Springer-Verlag, New York, 1988.  Google Scholar

[12]

Y. S. Osipov and A. V. Kryazhimskiy, Inverse Problems for Ordinary Differential Equations: Dynamical Solutions, Gordon and Breach Science Publishers, Basel, 1995.  Google Scholar

[13]

A. V. Kryazhimskiy and V. I. Maksimov, Resource-saving tracking problem with infinite time horizon, Differential Equations, 47 (2011), 1004-1013.  doi: 10.1134/S001226611107010X.  Google Scholar

[14]

A. V. Kryazhimskii and V. I. Maksimov, On combination of the processes of reconstruction and guaranteeing control, Automation and Remote Control, 74 (2013), 1235-1248.  doi: 10.1134/S0005117913080018.  Google Scholar

[15]

G. LeitmannS. Pandey and E. Ryan, Adaptive control of aircraft in windshear, Int. Journal of Robust and Nonlinear Control, 3 (1993), 133-153.  doi: 10.1002/rnc.4590030206.  Google Scholar

[16]

I. Lugo-CárdenasS. Salazar and R. Lozano, Lyapunov based 3D path following kinematic controller for a fixed wing UAV, IFAC-PapersOnLine, 50 (2017), 15946-15951.  doi: 10.1016/j.ifacol.2017.08.1747.  Google Scholar

[17]

V. I. Maksimov, The tracking of the trajectory of a dynamical system, J. Appl. Math. Mech., 75 (2011), 667-674.  doi: 10.1016/j.jappmathmech.2012.01.007.  Google Scholar

[18]

V. I. Maksimov, Differential guidance game with incomplete information on the state coordinates and unknown initial state, Differential Equations, 51 (2015), 1656-1665.  doi: 10.1134/S0012266115120137.  Google Scholar

[19]

A. Miele, T. Wang and W. W. Melvin, Optimization and gamma/theta guidance of flight trajectories in a windshear, in ICAS, Congress, 15th, London, England, September 7-12, 1986, Proceedings Volume 2,878–899. Google Scholar

[20]

J. -J. E. Slotine and W. Li, Applied Nonlinear Control, Taipei : Prentice Education Taiwan Ltd., 2005. Google Scholar

[21]

A. Wächter and L. T. Biegler, On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.  doi: 10.1007/s10107-004-0559-y.  Google Scholar

Figure 1.  Tracking of the landing trajectory in the case of a Dryden disturbance model with the characteristic value of $30\, \mathrm{m} / \mathrm{s}$. The black line presents the aircraft motion, and the grey line shows the reference trajectory
Figure 2.  The angle $ \gamma_K\,\hbox[\text{deg}] $ in the case of a Dryden disturbance model with the characteristic value of 30 $\mathrm{m} / \mathrm{s}$. In the upper plot the black line corresponds to the aircraft motion, and the grey line stands for the reference trajectory. The solid line in the lower plot shows the absolute tracking error using a semi-logarithmic scale
Figure 3.  The angle $ \chi_K\,\hbox[\text{deg}] $ in the case of a Dryden disturbance model with the characteristic value of 30 $\mathrm{m} / \mathrm{s}$. In the upper plot the black line corresponds to the aircraft motion, and the grey line stands for the reference trajectory. The solid line in the lower plot shows the absolute tracking error using a semi-logarithmic scale
Figure 4.  The velocity $ V_K\,[\mathrm{m} / \mathrm{s}] $ in the case of a Dryden disturbance model with the characteristic value of 30 $\mathrm{m} / \mathrm{s}$. In the upper plot the black line corresponds to the aircraft motion, and the grey line stands for the reference trajectory. The solid line in the lower plot shows the absolute tracking error using a semi-logarithmic scale
Figure 5.  The wind components $ W_x\,[\mathrm{m} / \mathrm{s}] $, $ W_y\,[\mathrm{m} / \mathrm{s}] $, and $ W_z\,[\mathrm{m} / \mathrm{s}] $ in the case of a Dryden disturbance model with the characteristic value of $ 30\, \mathrm{m} / \mathrm{s} $
Figure 6.  Tracking of the landing trajectory in the case of a Dryden disturbance model with the characteristic value of 45 $\mathrm{m} / \mathrm{s}$. The black line presents the aircraft motion, and the grey line shows the reference trajectory
Figure 7.  The angle $ \gamma_K\,\hbox[\text{deg}] $ in the case of a Dryden disturbance model with the characteristic value of 45 $\mathrm{m} / \mathrm{s}$. In the upper plot the black line corresponds to the aircraft motion, and the grey line stands for the reference trajectory. The solid line in the lower plot shows the absolute tracking error using a semi-logarithmic scale
Figure 8.  The angle $ \chi_K\,\hbox[\text{deg}] $ in the case of a Dryden disturbance model with the characteristic value of 45 $\mathrm{m} / \mathrm{s}$. In the upper plot the black line corresponds to the aircraft motion, and the grey line stands for the reference trajectory. The solid line in the lower plot shows the absolute tracking error using a semi-logarithmic scale
Figure 9.  The velocity $ V_K\,[\mathrm{m} / \mathrm{s}] $ in the case of a Dryden disturbance model with the characteristic value of 45 $\mathrm{m} / \mathrm{s}$. In the upper plot the black line corresponds to the aircraft motion, and the grey line stands for the reference trajectory. The solid line in the lower plot shows the absolute tracking error using a semi-logarithmic scale
Figure 10.  The wind components $ W_x\,[\mathrm{m} / \mathrm{s}] $, $ W_y\,[\mathrm{m} / \mathrm{s}] $, and $ W_z\,[\mathrm{m} / \mathrm{s}] $ in the case of a Dryden disturbance model with the characteristic value of $ 45\, \mathrm{m} / \mathrm{s} $
Figure 11.  The kinematic velocity $ V_K\,[\mathrm{m} / \mathrm{s}] $ for the case of repulsive disturbance, see (24). The straight line at $ V_K = 150\,\mathrm{m} / \mathrm{s} $ corresponds to the reference
Figure 12.  The angle $ \gamma_K\,\hbox[\text{deg}] $ for the case of repulsive disturbance, see (24). The straight line at $ \gamma_K = 0\,\text{deg} $ corresponds to the reference
Figure 13.  The angle $ \chi_K\,\hbox[\text{deg}] $ for the case of repulsive disturbance, see (24). The straight line at $ \chi_K = 0\,\text{deg} $ corresponds to the reference
Figure 14.  The position component $ y_N\,[{\rm{m}}] $ for the case of repulsive disturbance, see (24). The straight line at $ y_N = 0\,{\rm{m}} $ corresponds to the reference
Figure 15.  The altitude $ h = -z_N\,[{\rm{m}}] $ for the case of repulsive disturbance, see (24). The straight line at $ h = 5000\,{\rm{m}} $ corresponds to the reference
[1]

Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271

[2]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

[3]

İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021010

[4]

Yi Gao, Rui Li, Yingjing Shi, Li Xiao. Design of path planning and tracking control of quadrotor. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021063

[5]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[6]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[7]

Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021022

[8]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[9]

Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021014

[10]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021035

[11]

Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021055

[12]

Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021067

[13]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[14]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[15]

Patrick Henning, Anders M. N. Niklasson. Shadow Lagrangian dynamics for superfluidity. Kinetic & Related Models, 2021, 14 (2) : 303-321. doi: 10.3934/krm.2021006

[16]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[17]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[18]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[19]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[20]

Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021080

2019 Impact Factor: 0.857

Article outline

Figures and Tables

[Back to Top]