[1]
|
J. Andrej, Modeling and Optimal Control of Multiphysics Problems Using the Finite Element Method, Ph.D. Thesis, 2019. Available at http://nbn-resolving.de/urn:nbn:de:gbv:8-diss-251049
|
[2]
|
D. Angeli, R. Amrit and J. B. Rawlings, On average performance and stability of economic model predictive control, IEEE Transactions on Automatic Control, 57 (2012), 1615-1626.
doi: 10.1109/TAC.2011.2179349.
|
[3]
|
L. Grüne, Economic receding horizon control without terminal constraints, Automatica, 49 (2013), 725-734.
doi: 10.1016/j.automatica.2012.12.003.
|
[4]
|
L. Grüne, Approximation properties of receding horizon optimal control, Jahresbericht der Deutschen Mathematiker-Vereinigung, 118 (2016), 3-37.
doi: 10.1365/s13291-016-0134-5.
|
[5]
|
L. Grüne and J. Pannek, Practical NMPC suboptimality estimates along trajectories, Systems & Control Letters, 58 (2009), 161-168.
doi: 10.1016/j.sysconle.2008.10.012.
|
[6]
|
L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Theory and Algorithms, 2$^{nd}$ edition, Springer, 2017.
doi: 10.1007/978-3-319-46024-6.
|
[7]
|
L. Grüne and S. Pirkelmann, Closed-loop performance analysis for economic model predictive control of time-varying systems, in Proceedings of the 56th IEEE Conference on Decision and Control (CDC 2017), (eds. R. Middleton and D. Nesic), 2017, 5563–5569.
|
[8]
|
L. Grüne and S. Pirkelmann, Economic model predictive control for time-varying system: Performance and stability results, Optimal Control Applications and Methods, 41 (2020), 42-64.
doi: 10.1002/oca.2492.
|
[9]
|
L. Grüne, and S. Pirkelmann, Numerical verification of turnpike and continuity properties for time-varying PDEs, IFAC-PapersOnLine, 52 (2019), 7–12.
doi: 10.1016/j.ifacol.2019.08.002.
|
[10]
|
M. Gubisch and S. Volkwein, Proper orthogonal decomposition for linear-quadratic optimal control, in Model Reduction and Approximation: Theory and Algorithms, (eds. M. Ohlberger, P. Benner, A. Cohen and K. Willcox), SIAM (2017), Philadelphia, PA, 3–63.
doi: 10.1137/1.9781611974829.ch1.
|
[11]
|
S. Gugercin and A. C. Anthoulas., A survey of model reduction by balanced truncation and some new results, International Journal of Control, 77 (2004), 748-766.
doi: 10.1080/00207170410001713448.
|
[12]
|
P. Holmes, J. L. Lumley, G. Berkooz and C. W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, 2012.
doi: 10.1017/CBO9780511919701.
|
[13]
|
K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische Mathematik, 90 (2001), 117-148.
doi: 10.1007/s002110100282.
|
[14]
|
B. Lincoln and A. Rantzer, Relaxing dynamic programming, IEEE Transactions on Automatic Control, 51 (2006), 1249-1260.
doi: 10.1109/TAC.2006.878720.
|
[15]
|
L. Mechelli, POD-based State-Constrained Economic Model Predictive Control of Convection-Diffusion Phenomena, Ph.D. Thesis, 2019. Available at http://nbn-resolving.de/urn:nbn:de:bsz:352-2-2zoi8n9sxknm1
|
[16]
|
L. Mechelli and S. Volkwein, POD-based economic model predictive control for heat-convection phenomena, Lecture Notes in Computational Science and Engineering, 126, Springer, Cham, 2019, 663–671.
doi: 10.1007/978-3-319-96415-7_61.
|
[17]
|
L. Mechelli and S. Volkwein, POD-based economic optimal control of heat-convection phenomena, in Numerical Methods for Optimal Control Problems, (M. Falcone, R. Ferretti, L. Grüne and W. M. McEneaney), Springer 2018, 63–87.
|
[18]
|
M. A. Müller and L. Grüne, Economic model predictive control without terminal constraints for optimal periodic behavior, Automatica, 70 (2016), 128-139.
doi: 10.1016/j.automatica.2016.03.024.
|
[19]
|
M. Ohlberger and S. Rave., Reduced basis methods: success, limitations and future challenges., Proceedings of the Conference Algoritmy, 1–12, 2016.
|
[20]
|
F. Tröltzsch and S. Volkwein, POD a-posteriori error estimates for linear-quadratic optimal control problems, Computational Optimization and Applications, 44 (2009), 83-115.
doi: 10.1007/s10589-008-9224-3.
|
[21]
|
F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, American Math. Society, Providence, 2010.
|
[22]
|
M. Zanon, L. Grüne and M. Diehl, Periodic optimal control, dissipativity and MPC, IEEE Transactions on Automatic Control, 62 (2017), 2943-2949.
doi: 10.1109/TAC.2016.2601881.
|