doi: 10.3934/mcrf.2021013

Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations

*. 

University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany

**. 

University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany

Received  May 2019 Revised  January 2020 Published  March 2021

Fund Project: The authors are supported by DFG grants GR 1569/16-1 and VO 1658/4-1

In this paper performance indices for economic model predictive controllers (MPC) are considered. Since existing relative performance measures, designed for stabilizing controllers, fail in the economic setting, we propose alternative absolute quantities. We show that these can be applied to assess the performance of the closed loop trajectories on-line while the controller is running. The advantages of our approach are demonstrated by simulations involving a convection-diffusion-system. The method is also combined with proper orthogonal decomposition, thus demonstrating the possibility for both efficient and performant MPC for systems governed by partial differential equations.

Citation: Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021013
References:
[1]

J. Andrej, Modeling and Optimal Control of Multiphysics Problems Using the Finite Element Method, Ph.D. Thesis, 2019. Available at http://nbn-resolving.de/urn:nbn:de:gbv:8-diss-251049 Google Scholar

[2]

D. AngeliR. Amrit and J. B. Rawlings, On average performance and stability of economic model predictive control, IEEE Transactions on Automatic Control, 57 (2012), 1615-1626.  doi: 10.1109/TAC.2011.2179349.  Google Scholar

[3]

L. Grüne, Economic receding horizon control without terminal constraints, Automatica, 49 (2013), 725-734.  doi: 10.1016/j.automatica.2012.12.003.  Google Scholar

[4]

L. Grüne, Approximation properties of receding horizon optimal control, Jahresbericht der Deutschen Mathematiker-Vereinigung, 118 (2016), 3-37.  doi: 10.1365/s13291-016-0134-5.  Google Scholar

[5]

L. Grüne and J. Pannek, Practical NMPC suboptimality estimates along trajectories, Systems & Control Letters, 58 (2009), 161-168.  doi: 10.1016/j.sysconle.2008.10.012.  Google Scholar

[6]

L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Theory and Algorithms, 2$^{nd}$ edition, Springer, 2017. doi: 10.1007/978-3-319-46024-6.  Google Scholar

[7]

L. Grüne and S. Pirkelmann, Closed-loop performance analysis for economic model predictive control of time-varying systems, in Proceedings of the 56th IEEE Conference on Decision and Control (CDC 2017), (eds. R. Middleton and D. Nesic), 2017, 5563–5569. Google Scholar

[8]

L. Grüne and S. Pirkelmann, Economic model predictive control for time-varying system: Performance and stability results, Optimal Control Applications and Methods, 41 (2020), 42-64.  doi: 10.1002/oca.2492.  Google Scholar

[9]

L. Grüne, and S. Pirkelmann, Numerical verification of turnpike and continuity properties for time-varying PDEs, IFAC-PapersOnLine, 52 (2019), 7–12. doi: 10.1016/j.ifacol.2019.08.002.  Google Scholar

[10]

M. Gubisch and S. Volkwein, Proper orthogonal decomposition for linear-quadratic optimal control, in Model Reduction and Approximation: Theory and Algorithms, (eds. M. Ohlberger, P. Benner, A. Cohen and K. Willcox), SIAM (2017), Philadelphia, PA, 3–63. doi: 10.1137/1.9781611974829.ch1.  Google Scholar

[11]

S. Gugercin and A. C. Anthoulas., A survey of model reduction by balanced truncation and some new results, International Journal of Control, 77 (2004), 748-766.  doi: 10.1080/00207170410001713448.  Google Scholar

[12] P. HolmesJ. L. LumleyG. Berkooz and C. W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, 2012.  doi: 10.1017/CBO9780511919701.  Google Scholar
[13]

K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische Mathematik, 90 (2001), 117-148.  doi: 10.1007/s002110100282.  Google Scholar

[14]

B. Lincoln and A. Rantzer, Relaxing dynamic programming, IEEE Transactions on Automatic Control, 51 (2006), 1249-1260.  doi: 10.1109/TAC.2006.878720.  Google Scholar

[15]

L. Mechelli, POD-based State-Constrained Economic Model Predictive Control of Convection-Diffusion Phenomena, Ph.D. Thesis, 2019. Available at http://nbn-resolving.de/urn:nbn:de:bsz:352-2-2zoi8n9sxknm1 Google Scholar

[16]

L. Mechelli and S. Volkwein, POD-based economic model predictive control for heat-convection phenomena, Lecture Notes in Computational Science and Engineering, 126, Springer, Cham, 2019, 663–671. doi: 10.1007/978-3-319-96415-7_61.  Google Scholar

[17]

L. Mechelli and S. Volkwein, POD-based economic optimal control of heat-convection phenomena, in Numerical Methods for Optimal Control Problems, (M. Falcone, R. Ferretti, L. Grüne and W. M. McEneaney), Springer 2018, 63–87.  Google Scholar

[18]

M. A. Müller and L. Grüne, Economic model predictive control without terminal constraints for optimal periodic behavior, Automatica, 70 (2016), 128-139.  doi: 10.1016/j.automatica.2016.03.024.  Google Scholar

[19]

M. Ohlberger and S. Rave., Reduced basis methods: success, limitations and future challenges., Proceedings of the Conference Algoritmy, 1–12, 2016. Google Scholar

[20]

F. Tröltzsch and S. Volkwein, POD a-posteriori error estimates for linear-quadratic optimal control problems, Computational Optimization and Applications, 44 (2009), 83-115.  doi: 10.1007/s10589-008-9224-3.  Google Scholar

[21]

F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, American Math. Society, Providence, 2010. Google Scholar

[22]

M. ZanonL. Grüne and M. Diehl, Periodic optimal control, dissipativity and MPC, IEEE Transactions on Automatic Control, 62 (2017), 2943-2949.  doi: 10.1109/TAC.2016.2601881.  Google Scholar

show all references

References:
[1]

J. Andrej, Modeling and Optimal Control of Multiphysics Problems Using the Finite Element Method, Ph.D. Thesis, 2019. Available at http://nbn-resolving.de/urn:nbn:de:gbv:8-diss-251049 Google Scholar

[2]

D. AngeliR. Amrit and J. B. Rawlings, On average performance and stability of economic model predictive control, IEEE Transactions on Automatic Control, 57 (2012), 1615-1626.  doi: 10.1109/TAC.2011.2179349.  Google Scholar

[3]

L. Grüne, Economic receding horizon control without terminal constraints, Automatica, 49 (2013), 725-734.  doi: 10.1016/j.automatica.2012.12.003.  Google Scholar

[4]

L. Grüne, Approximation properties of receding horizon optimal control, Jahresbericht der Deutschen Mathematiker-Vereinigung, 118 (2016), 3-37.  doi: 10.1365/s13291-016-0134-5.  Google Scholar

[5]

L. Grüne and J. Pannek, Practical NMPC suboptimality estimates along trajectories, Systems & Control Letters, 58 (2009), 161-168.  doi: 10.1016/j.sysconle.2008.10.012.  Google Scholar

[6]

L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Theory and Algorithms, 2$^{nd}$ edition, Springer, 2017. doi: 10.1007/978-3-319-46024-6.  Google Scholar

[7]

L. Grüne and S. Pirkelmann, Closed-loop performance analysis for economic model predictive control of time-varying systems, in Proceedings of the 56th IEEE Conference on Decision and Control (CDC 2017), (eds. R. Middleton and D. Nesic), 2017, 5563–5569. Google Scholar

[8]

L. Grüne and S. Pirkelmann, Economic model predictive control for time-varying system: Performance and stability results, Optimal Control Applications and Methods, 41 (2020), 42-64.  doi: 10.1002/oca.2492.  Google Scholar

[9]

L. Grüne, and S. Pirkelmann, Numerical verification of turnpike and continuity properties for time-varying PDEs, IFAC-PapersOnLine, 52 (2019), 7–12. doi: 10.1016/j.ifacol.2019.08.002.  Google Scholar

[10]

M. Gubisch and S. Volkwein, Proper orthogonal decomposition for linear-quadratic optimal control, in Model Reduction and Approximation: Theory and Algorithms, (eds. M. Ohlberger, P. Benner, A. Cohen and K. Willcox), SIAM (2017), Philadelphia, PA, 3–63. doi: 10.1137/1.9781611974829.ch1.  Google Scholar

[11]

S. Gugercin and A. C. Anthoulas., A survey of model reduction by balanced truncation and some new results, International Journal of Control, 77 (2004), 748-766.  doi: 10.1080/00207170410001713448.  Google Scholar

[12] P. HolmesJ. L. LumleyG. Berkooz and C. W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, 2012.  doi: 10.1017/CBO9780511919701.  Google Scholar
[13]

K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische Mathematik, 90 (2001), 117-148.  doi: 10.1007/s002110100282.  Google Scholar

[14]

B. Lincoln and A. Rantzer, Relaxing dynamic programming, IEEE Transactions on Automatic Control, 51 (2006), 1249-1260.  doi: 10.1109/TAC.2006.878720.  Google Scholar

[15]

L. Mechelli, POD-based State-Constrained Economic Model Predictive Control of Convection-Diffusion Phenomena, Ph.D. Thesis, 2019. Available at http://nbn-resolving.de/urn:nbn:de:bsz:352-2-2zoi8n9sxknm1 Google Scholar

[16]

L. Mechelli and S. Volkwein, POD-based economic model predictive control for heat-convection phenomena, Lecture Notes in Computational Science and Engineering, 126, Springer, Cham, 2019, 663–671. doi: 10.1007/978-3-319-96415-7_61.  Google Scholar

[17]

L. Mechelli and S. Volkwein, POD-based economic optimal control of heat-convection phenomena, in Numerical Methods for Optimal Control Problems, (M. Falcone, R. Ferretti, L. Grüne and W. M. McEneaney), Springer 2018, 63–87.  Google Scholar

[18]

M. A. Müller and L. Grüne, Economic model predictive control without terminal constraints for optimal periodic behavior, Automatica, 70 (2016), 128-139.  doi: 10.1016/j.automatica.2016.03.024.  Google Scholar

[19]

M. Ohlberger and S. Rave., Reduced basis methods: success, limitations and future challenges., Proceedings of the Conference Algoritmy, 1–12, 2016. Google Scholar

[20]

F. Tröltzsch and S. Volkwein, POD a-posteriori error estimates for linear-quadratic optimal control problems, Computational Optimization and Applications, 44 (2009), 83-115.  doi: 10.1007/s10589-008-9224-3.  Google Scholar

[21]

F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, American Math. Society, Providence, 2010. Google Scholar

[22]

M. ZanonL. Grüne and M. Diehl, Periodic optimal control, dissipativity and MPC, IEEE Transactions on Automatic Control, 62 (2017), 2943-2949.  doi: 10.1109/TAC.2016.2601881.  Google Scholar

Figure 1.  Illustration of the quantities used for the computation of the performance indices $ \varepsilon_{N,P}^2(K) $ and $ \varepsilon_{N,P}^3(K) $
Figure 2.  Explanation of how the choice of $ P $ influences the quantity $ E_{N,P} $
Figure 3.  Boundary $ \Gamma = \Gamma_{\mathsf{out}}\cup \Gamma_{\mathsf{c}} $ and velocity field $ \boldsymbol v(x) $ (green = inflow, blue = outflow)
Figure 4.  MPC closed loop cost and relative performance index
Figure 5.  Plots of the individual components of the absolute performance index
Figure 6.  Plots of performance index $ \varepsilon^3_{N,P} $ for longer simulation times and of the influence of $ P $ on the value of $ E_{N,P} $
Figure 7.  Comparison between POD-FE and POD-POD relative errors for $ \sum_{k = 0}^{K-1} \varepsilon^1_N(k) $ with $ \ell = 25 $ POD basis functions
Figure 8.  Relative error between the FE and POD cumulative performance index $ \varepsilon_N^1 $ over time $ k $ for different $ N $ and number of POD basis functions $ \ell = 15,20,25 $
Figure 9.  Relative error between the FE and POD $ E_{N,P} $ over time $ k $ for $ P = 30 $, different $ N $ and number of POD basis functions $ \ell = 15,20,25 $
Table 1.  Test results for $ N = 200 $, $ P = 30 $ and $ K = 120 $ for full (FE) and reduced (POD) order models
Method $ \ell $ rel_err_$ u $ $ J_{120}^{cl}(y_{\circ},\mu_{200}) $ $ E_{200,30}(30) $ Alg. Time Speed-up
FE 7791.565 -0.0014 1182 s
POD-FE 20 0.00055 7791.591 0.0031 346 s 3.4
POD-FE 25 0.00008 7791.569 -0.0041 396 s 3.0
POD-POD 20 0.00070 7791.614 0.0042 312 s 3.8
POD-POD 25 0.00012 7791.577 -0.0038 302 s 3.9
Method $ \ell $ rel_err_$ u $ $ J_{120}^{cl}(y_{\circ},\mu_{200}) $ $ E_{200,30}(30) $ Alg. Time Speed-up
FE 7791.565 -0.0014 1182 s
POD-FE 20 0.00055 7791.591 0.0031 346 s 3.4
POD-FE 25 0.00008 7791.569 -0.0041 396 s 3.0
POD-POD 20 0.00070 7791.614 0.0042 312 s 3.8
POD-POD 25 0.00012 7791.577 -0.0038 302 s 3.9
[1]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[2]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[3]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[4]

Jaouad Danane. Optimal control of viral infection model with saturated infection rate. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 363-375. doi: 10.3934/naco.2020031

[5]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[6]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[7]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[8]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032

[9]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[10]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[11]

Xianbang Chen, Yang Liu, Bin Li. Adjustable robust optimization in enabling optimal day-ahead economic dispatch of CCHP-MG considering uncertainties of wind-solar power and electric vehicle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1639-1661. doi: 10.3934/jimo.2020038

[12]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[13]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[14]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[15]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[16]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[17]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[18]

Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215

[19]

Yi Gao, Rui Li, Yingjing Shi, Li Xiao. Design of path planning and tracking control of quadrotor. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021063

[20]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

2019 Impact Factor: 0.857

Article outline

Figures and Tables

[Back to Top]