\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system

  • * Corresponding author: Marita Holtmannspötter

    * Corresponding author: Marita Holtmannspötter 
Abstract Full Text(HTML) Figure(3) Related Papers Cited by
  • In this paper we investigate a priori error estimates for the space-time Galerkin finite element discretization of an optimal control problem governed by a simplified linear gradient enhanced damage model. The model equations are of a special structure as the state equation consists of an elliptic PDE which has to be fulfilled at almost all times coupled with an ODE that has to hold true in almost all points in space. The state equation is discretized by a piecewise constant discontinuous Galerkin method in time and usual conforming linear finite elements in space. For the discretization of the control we employ the same discretization technique which turns out to be equivalent to a variational discretization approach. We provide error estimates of optimal order both for the discretization of the state equation as well as for the optimal control. Numerical experiments are added to illustrate the proven rates of convergence.

    Mathematics Subject Classification: 49M25, 65J10, 65M15, 65M60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Refinement of the temporal discretization for $N = 66049$(left) and $N = 263169$(right) nodes

    Figure 2.  Refinement of the spatial discretization for $M = 512$(left) and $M = 4096$(right) time steps

    Figure 3.  Errors $\Vert l-l_\sigma\Vert_{I\times\Omega}$ for different spatial and temporal mesh refinements

  • [1] T. BreitenK. Kunisch and S. S. Rodrigues, Feedback stabilization to nonstationary solutions of a class of reaction diffusion equations of FitzHugh-Nagumo type, SIAM J. Control Optim., 55 (2017), 2684-2713.  doi: 10.1137/15M1038165.
    [2] E. Casas and K. Chrysafinos, A discontinuous Galerkin time-stepping scheme for the velocity tracking problem, SIAM Journal on Numerical Analysis, 50 (2012), 2281-2306.  doi: 10.1137/110829404.
    [3] E. Casas and K. Chrysafinos, Analysis of the velocity tracking control problem for the 3D evolutionary Navier-Stokes equations, SIAM Journal on Control and Optimization, 54 (2016), 99-128.  doi: 10.1137/140978107.
    [4] K. Chudej, H. J. Pesch, M. Wächter, G. Sachs and F. Le Bras, Instationary heat-constrained trajectory optimization of a hypersonic space vehicle by ODE-PDE-constrained optimal control, Variational Analysis and Aerospace Engineering, Springer Optim. Appl., 33, Springer, New York, 2009,127–144. doi: 10.1007/978-0-387-95857-6_8.
    [5] B. J. Dimitrijevic and K. Hackl, A method for gradient enhancement of continuum damage models, Technische Mechanik, Ruhr-Universität Bochum, 28 (2008), 43-52. 
    [6] B. J. Dimitrijevic and K. Hackl, A regularization framework for damage-plasticity models via gradient enhancement of the free energy, International Journal for Numerical Methods in Biomedical Engineering, 27 (2011), 1199-1210.  doi: 10.1002/cnm.1350.
    [7] E. Emmrich, Gewöhnliche und Operator-differentialgleichungen, Vieweg, 2004. doi: 10.1007/978-3-322-80240-8.
    [8] K. ErikssonC. Johnson and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method, RAIRO Modél. Math. Anal. Numér, 19 (1985), 611-643.  doi: 10.1051/m2an/1985190406111.
    [9] K. Eriksson and C. Johnson, Adaptive finite element mothods for parabolic problems I: A linear model problem, SIAM Journal on Numerical Analysis, 28 (1991), 43-77.  doi: 10.1137/0728003.
    [10] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems II: optimal error estimates in $L_\infty L_2$ and $L_\infty L_\infty$, SIAM Journal on Numerical Analysis, 32 (1995), 706-740.  doi: 10.1137/0732033.
    [11] L. C. Evans, Partial Differential Equations Vol. 19, American Mathematical Society, Providence, Rhode Island, 1998.
    [12] M. Gerdts and S.-J. Kimmerle, Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin, Discrete Contin. Dyn. Syst. 2015, Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., 515–524. doi: 10.3934/proc.2015.0515.
    [13] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Boston, MA, 1985.
    [14] M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Computational Optimization and Applications, 30 (2005), 45-61.  doi: 10.1007/s10589-005-4559-5.
    [15] D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition, Mathematical and Computer Modelling, 38 (2003), 1003-1028.  doi: 10.1016/S0895-7177(03)90102-6.
    [16] S.-J. Kimmerle and M. Gerdts, Necessary optimality conditions and a semi-smooth Newton approach for an optimal control problem of a coupled system of Saint-Venant equations and ordinary differential equations, Pure Appl. Funct. Anal., 1 (2016), 231-256. 
    [17] S.-J. KimmerleM. Gerdts and R. Herzog, Optimal control of an elastic crane-trolley-load system - a case study for optimal control of coupled ODE-PDE systems, Mathematical and Computer Modelling of Dynamical Systems, 24 (2018), 182-206.  doi: 10.1080/13873954.2017.1405046.
    [18] A. Logg, K. A. Mardal and G. N. Wells, Automated solution of Differential Equations by the Finite Element Method, Springer Verlag, 2012.
    [19] D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control Problems part I: Problems without control constraints, SIAM Journal on Control and Optimization, 47 (2008), 1150-1177.  doi: 10.1137/070694016.
    [20] D. Meidner and B. Vexler, Optimal Error Estimates for Fully Discrete Galerkin Approximations of Semilinear Parabolic Equations, ESAIM: M2AN, 52 (2018), 2307-2325.  doi: 10.1051/m2an/2018040.
    [21] C. MeyerS. M. Schnepp and O. Thoma, Optimal control of the inhomogeneous relativistic Maxwell-Newton-Lorentz equations, SIAM J. Control Optim., 54 (2016), 2490-2525.  doi: 10.1137/14100083X.
    [22] C. Meyer and L. M. Susu, Analysis of a viscous two-field gradient damage model, part I: Existence and uniqueness, Z. Anal. Anwend., 38 (2019), 249-286.  doi: 10.4171/ZAA/1637.
    [23] C. Meyer and L. Susu, Analysis of a viscous two-field gradient damage model, part II: Penalization limit, Z. Anal. Anwend., 38 (2019), 439-474.  doi: 10.4171/ZAA/1645.
    [24] I. Neitzel and B. Vexler, A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems, Numerische Mathematik, 120 (2011), 345-386.  doi: 10.1007/s00211-011-0409-9.
    [25] L. Susu, Analysis and optimal control of a damage model with penalty, PhD Thesis, TU Dortmund, 2017.
    [26] F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen, vol. 2, Vieweg+Teubner, 2009.
    [27] G. Wachsmuth, Optimal Control of Quasistatic Plasticity, PhD Thesis, TU Chemnitz, 2011.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(1808) PDF downloads(217) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return