• Previous Article
    External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms
  • MCRF Home
  • This Issue
  • Next Article
    Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations
September  2021, 11(3): 601-624. doi: 10.3934/mcrf.2021014

A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system

1. 

Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Straße 9, 45127 Essen, Germany

2. 

Department of Mathematics, Technical University of Munich, Boltzmannstraße 3, 85748 Garching, Germany

* Corresponding author: Marita Holtmannspötter

Received  April 2019 Revised  December 2019 Published  September 2021 Early access  March 2021

In this paper we investigate a priori error estimates for the space-time Galerkin finite element discretization of an optimal control problem governed by a simplified linear gradient enhanced damage model. The model equations are of a special structure as the state equation consists of an elliptic PDE which has to be fulfilled at almost all times coupled with an ODE that has to hold true in almost all points in space. The state equation is discretized by a piecewise constant discontinuous Galerkin method in time and usual conforming linear finite elements in space. For the discretization of the control we employ the same discretization technique which turns out to be equivalent to a variational discretization approach. We provide error estimates of optimal order both for the discretization of the state equation as well as for the optimal control. Numerical experiments are added to illustrate the proven rates of convergence.

Citation: Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021, 11 (3) : 601-624. doi: 10.3934/mcrf.2021014
References:
[1]

T. BreitenK. Kunisch and S. S. Rodrigues, Feedback stabilization to nonstationary solutions of a class of reaction diffusion equations of FitzHugh-Nagumo type, SIAM J. Control Optim., 55 (2017), 2684-2713.  doi: 10.1137/15M1038165.  Google Scholar

[2]

E. Casas and K. Chrysafinos, A discontinuous Galerkin time-stepping scheme for the velocity tracking problem, SIAM Journal on Numerical Analysis, 50 (2012), 2281-2306.  doi: 10.1137/110829404.  Google Scholar

[3]

E. Casas and K. Chrysafinos, Analysis of the velocity tracking control problem for the 3D evolutionary Navier-Stokes equations, SIAM Journal on Control and Optimization, 54 (2016), 99-128.  doi: 10.1137/140978107.  Google Scholar

[4]

K. Chudej, H. J. Pesch, M. Wächter, G. Sachs and F. Le Bras, Instationary heat-constrained trajectory optimization of a hypersonic space vehicle by ODE-PDE-constrained optimal control, Variational Analysis and Aerospace Engineering, Springer Optim. Appl., 33, Springer, New York, 2009,127–144. doi: 10.1007/978-0-387-95857-6_8.  Google Scholar

[5]

B. J. Dimitrijevic and K. Hackl, A method for gradient enhancement of continuum damage models, Technische Mechanik, Ruhr-Universität Bochum, 28 (2008), 43-52.   Google Scholar

[6]

B. J. Dimitrijevic and K. Hackl, A regularization framework for damage-plasticity models via gradient enhancement of the free energy, International Journal for Numerical Methods in Biomedical Engineering, 27 (2011), 1199-1210.  doi: 10.1002/cnm.1350.  Google Scholar

[7]

E. Emmrich, Gewöhnliche und Operator-differentialgleichungen, Vieweg, 2004. doi: 10.1007/978-3-322-80240-8.  Google Scholar

[8]

K. ErikssonC. Johnson and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method, RAIRO Modél. Math. Anal. Numér, 19 (1985), 611-643.  doi: 10.1051/m2an/1985190406111.  Google Scholar

[9]

K. Eriksson and C. Johnson, Adaptive finite element mothods for parabolic problems I: A linear model problem, SIAM Journal on Numerical Analysis, 28 (1991), 43-77.  doi: 10.1137/0728003.  Google Scholar

[10]

K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems II: optimal error estimates in $L_\infty L_2$ and $L_\infty L_\infty$, SIAM Journal on Numerical Analysis, 32 (1995), 706-740.  doi: 10.1137/0732033.  Google Scholar

[11]

L. C. Evans, Partial Differential Equations Vol. 19, American Mathematical Society, Providence, Rhode Island, 1998. Google Scholar

[12]

M. Gerdts and S.-J. Kimmerle, Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin, Discrete Contin. Dyn. Syst. 2015, Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., 515–524. doi: 10.3934/proc.2015.0515.  Google Scholar

[13]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Boston, MA, 1985.  Google Scholar

[14]

M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Computational Optimization and Applications, 30 (2005), 45-61.  doi: 10.1007/s10589-005-4559-5.  Google Scholar

[15]

D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition, Mathematical and Computer Modelling, 38 (2003), 1003-1028.  doi: 10.1016/S0895-7177(03)90102-6.  Google Scholar

[16]

S.-J. Kimmerle and M. Gerdts, Necessary optimality conditions and a semi-smooth Newton approach for an optimal control problem of a coupled system of Saint-Venant equations and ordinary differential equations, Pure Appl. Funct. Anal., 1 (2016), 231-256.   Google Scholar

[17]

S.-J. KimmerleM. Gerdts and R. Herzog, Optimal control of an elastic crane-trolley-load system - a case study for optimal control of coupled ODE-PDE systems, Mathematical and Computer Modelling of Dynamical Systems, 24 (2018), 182-206.  doi: 10.1080/13873954.2017.1405046.  Google Scholar

[18]

A. Logg, K. A. Mardal and G. N. Wells, Automated solution of Differential Equations by the Finite Element Method, Springer Verlag, 2012. Google Scholar

[19]

D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control Problems part I: Problems without control constraints, SIAM Journal on Control and Optimization, 47 (2008), 1150-1177.  doi: 10.1137/070694016.  Google Scholar

[20]

D. Meidner and B. Vexler, Optimal Error Estimates for Fully Discrete Galerkin Approximations of Semilinear Parabolic Equations, ESAIM: M2AN, 52 (2018), 2307-2325.  doi: 10.1051/m2an/2018040.  Google Scholar

[21]

C. MeyerS. M. Schnepp and O. Thoma, Optimal control of the inhomogeneous relativistic Maxwell-Newton-Lorentz equations, SIAM J. Control Optim., 54 (2016), 2490-2525.  doi: 10.1137/14100083X.  Google Scholar

[22]

C. Meyer and L. M. Susu, Analysis of a viscous two-field gradient damage model, part I: Existence and uniqueness, Z. Anal. Anwend., 38 (2019), 249-286.  doi: 10.4171/ZAA/1637.  Google Scholar

[23]

C. Meyer and L. Susu, Analysis of a viscous two-field gradient damage model, part II: Penalization limit, Z. Anal. Anwend., 38 (2019), 439-474.  doi: 10.4171/ZAA/1645.  Google Scholar

[24]

I. Neitzel and B. Vexler, A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems, Numerische Mathematik, 120 (2011), 345-386.  doi: 10.1007/s00211-011-0409-9.  Google Scholar

[25]

L. Susu, Analysis and optimal control of a damage model with penalty, PhD Thesis, TU Dortmund, 2017. Google Scholar

[26]

F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen, vol. 2, Vieweg+Teubner, 2009. Google Scholar

[27]

G. Wachsmuth, Optimal Control of Quasistatic Plasticity, PhD Thesis, TU Chemnitz, 2011. Google Scholar

show all references

References:
[1]

T. BreitenK. Kunisch and S. S. Rodrigues, Feedback stabilization to nonstationary solutions of a class of reaction diffusion equations of FitzHugh-Nagumo type, SIAM J. Control Optim., 55 (2017), 2684-2713.  doi: 10.1137/15M1038165.  Google Scholar

[2]

E. Casas and K. Chrysafinos, A discontinuous Galerkin time-stepping scheme for the velocity tracking problem, SIAM Journal on Numerical Analysis, 50 (2012), 2281-2306.  doi: 10.1137/110829404.  Google Scholar

[3]

E. Casas and K. Chrysafinos, Analysis of the velocity tracking control problem for the 3D evolutionary Navier-Stokes equations, SIAM Journal on Control and Optimization, 54 (2016), 99-128.  doi: 10.1137/140978107.  Google Scholar

[4]

K. Chudej, H. J. Pesch, M. Wächter, G. Sachs and F. Le Bras, Instationary heat-constrained trajectory optimization of a hypersonic space vehicle by ODE-PDE-constrained optimal control, Variational Analysis and Aerospace Engineering, Springer Optim. Appl., 33, Springer, New York, 2009,127–144. doi: 10.1007/978-0-387-95857-6_8.  Google Scholar

[5]

B. J. Dimitrijevic and K. Hackl, A method for gradient enhancement of continuum damage models, Technische Mechanik, Ruhr-Universität Bochum, 28 (2008), 43-52.   Google Scholar

[6]

B. J. Dimitrijevic and K. Hackl, A regularization framework for damage-plasticity models via gradient enhancement of the free energy, International Journal for Numerical Methods in Biomedical Engineering, 27 (2011), 1199-1210.  doi: 10.1002/cnm.1350.  Google Scholar

[7]

E. Emmrich, Gewöhnliche und Operator-differentialgleichungen, Vieweg, 2004. doi: 10.1007/978-3-322-80240-8.  Google Scholar

[8]

K. ErikssonC. Johnson and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method, RAIRO Modél. Math. Anal. Numér, 19 (1985), 611-643.  doi: 10.1051/m2an/1985190406111.  Google Scholar

[9]

K. Eriksson and C. Johnson, Adaptive finite element mothods for parabolic problems I: A linear model problem, SIAM Journal on Numerical Analysis, 28 (1991), 43-77.  doi: 10.1137/0728003.  Google Scholar

[10]

K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems II: optimal error estimates in $L_\infty L_2$ and $L_\infty L_\infty$, SIAM Journal on Numerical Analysis, 32 (1995), 706-740.  doi: 10.1137/0732033.  Google Scholar

[11]

L. C. Evans, Partial Differential Equations Vol. 19, American Mathematical Society, Providence, Rhode Island, 1998. Google Scholar

[12]

M. Gerdts and S.-J. Kimmerle, Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin, Discrete Contin. Dyn. Syst. 2015, Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., 515–524. doi: 10.3934/proc.2015.0515.  Google Scholar

[13]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Boston, MA, 1985.  Google Scholar

[14]

M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Computational Optimization and Applications, 30 (2005), 45-61.  doi: 10.1007/s10589-005-4559-5.  Google Scholar

[15]

D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition, Mathematical and Computer Modelling, 38 (2003), 1003-1028.  doi: 10.1016/S0895-7177(03)90102-6.  Google Scholar

[16]

S.-J. Kimmerle and M. Gerdts, Necessary optimality conditions and a semi-smooth Newton approach for an optimal control problem of a coupled system of Saint-Venant equations and ordinary differential equations, Pure Appl. Funct. Anal., 1 (2016), 231-256.   Google Scholar

[17]

S.-J. KimmerleM. Gerdts and R. Herzog, Optimal control of an elastic crane-trolley-load system - a case study for optimal control of coupled ODE-PDE systems, Mathematical and Computer Modelling of Dynamical Systems, 24 (2018), 182-206.  doi: 10.1080/13873954.2017.1405046.  Google Scholar

[18]

A. Logg, K. A. Mardal and G. N. Wells, Automated solution of Differential Equations by the Finite Element Method, Springer Verlag, 2012. Google Scholar

[19]

D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control Problems part I: Problems without control constraints, SIAM Journal on Control and Optimization, 47 (2008), 1150-1177.  doi: 10.1137/070694016.  Google Scholar

[20]

D. Meidner and B. Vexler, Optimal Error Estimates for Fully Discrete Galerkin Approximations of Semilinear Parabolic Equations, ESAIM: M2AN, 52 (2018), 2307-2325.  doi: 10.1051/m2an/2018040.  Google Scholar

[21]

C. MeyerS. M. Schnepp and O. Thoma, Optimal control of the inhomogeneous relativistic Maxwell-Newton-Lorentz equations, SIAM J. Control Optim., 54 (2016), 2490-2525.  doi: 10.1137/14100083X.  Google Scholar

[22]

C. Meyer and L. M. Susu, Analysis of a viscous two-field gradient damage model, part I: Existence and uniqueness, Z. Anal. Anwend., 38 (2019), 249-286.  doi: 10.4171/ZAA/1637.  Google Scholar

[23]

C. Meyer and L. Susu, Analysis of a viscous two-field gradient damage model, part II: Penalization limit, Z. Anal. Anwend., 38 (2019), 439-474.  doi: 10.4171/ZAA/1645.  Google Scholar

[24]

I. Neitzel and B. Vexler, A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems, Numerische Mathematik, 120 (2011), 345-386.  doi: 10.1007/s00211-011-0409-9.  Google Scholar

[25]

L. Susu, Analysis and optimal control of a damage model with penalty, PhD Thesis, TU Dortmund, 2017. Google Scholar

[26]

F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen, vol. 2, Vieweg+Teubner, 2009. Google Scholar

[27]

G. Wachsmuth, Optimal Control of Quasistatic Plasticity, PhD Thesis, TU Chemnitz, 2011. Google Scholar

Figure 1.  Refinement of the temporal discretization for $N = 66049$(left) and $N = 263169$(right) nodes
Figure 2.  Refinement of the spatial discretization for $M = 512$(left) and $M = 4096$(right) time steps
Figure 3.  Errors $\Vert l-l_\sigma\Vert_{I\times\Omega}$ for different spatial and temporal mesh refinements
[1]

Vanessa Baumgärtner, Simone Göttlich, Stephan Knapp. Feedback stabilization for a coupled PDE-ODE production system. Mathematical Control & Related Fields, 2020, 10 (2) : 405-424. doi: 10.3934/mcrf.2020003

[2]

Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks & Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501

[3]

Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435

[4]

Matthias Gerdts, Sven-Joachim Kimmerle. Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin. Conference Publications, 2015, 2015 (special) : 515-524. doi: 10.3934/proc.2015.0515

[5]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[6]

Youshan Tao, J. Ignacio Tello. Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 193-207. doi: 10.3934/mbe.2016.13.193

[7]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[8]

Dominik Hafemeyer, Florian Mannel, Ira Neitzel, Boris Vexler. Finite element error estimates for one-dimensional elliptic optimal control by BV-functions. Mathematical Control & Related Fields, 2020, 10 (2) : 333-363. doi: 10.3934/mcrf.2019041

[9]

Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial & Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631

[10]

Wandi Ding. Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 633-659. doi: 10.3934/mbe.2007.4.633

[11]

Adam Bobrowski, Katarzyna Morawska. From a PDE model to an ODE model of dynamics of synaptic depression. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2313-2327. doi: 10.3934/dcdsb.2012.17.2313

[12]

Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic & Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040

[13]

Niklas Behringer. Improved error estimates for optimal control of the Stokes problem with pointwise tracking in three dimensions. Mathematical Control & Related Fields, 2021, 11 (2) : 313-328. doi: 10.3934/mcrf.2020038

[14]

Riccarda Rossi. Existence results for a coupled viscoplastic-damage model in thermoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1413-1466. doi: 10.3934/dcdss.2017075

[15]

Sabine Eisenhofer, Messoud A. Efendiev, Mitsuharu Ôtani, Sabine Schulz, Hans Zischka. On an ODE-PDE coupling model of the mitochondrial swelling process. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1031-1057. doi: 10.3934/dcdsb.2015.20.1031

[16]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[17]

Olha P. Kupenko, Rosanna Manzo. Shape stability of optimal control problems in coefficients for coupled system of Hammerstein type. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2967-2992. doi: 10.3934/dcdsb.2015.20.2967

[18]

Bosheng Chen, Huilai Li, Changchun Liu. Optimal distributed control for a coupled phase-field system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021110

[19]

Roberto Triggiani. The coupled PDE system of a composite (sandwich) beam revisited. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 285-298. doi: 10.3934/dcdsb.2003.3.285

[20]

Claude Stolz. On estimation of internal state by an optimal control approach for elastoplastic material. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 599-611. doi: 10.3934/dcdss.2016014

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (91)
  • HTML views (142)
  • Cited by (0)

[Back to Top]