doi: 10.3934/mcrf.2021016

Modeling the pressure distribution in a spatially averaged cerebral capillary network

1. 

Technische Universität München, 81675 Munich, Germany

2. 

Far Eastern Federal University, 690950 Vladivostok, Russia

3. 

Institute for Applied Mathematics, FEB RAS, 690041 Vladivostok, Russia

* Corresponding author: Andrey Kovtanyuk

Received  March 2019 Revised  March 2020 Published  March 2021

Fund Project: The work was supported by the Klaus Tschira Foundation, Buhl-Strohmaier Foundation, and Würth Foundation

A boundary value problem for the Poisson's equation with unknown intensities of sources is studied in context of mathematical modeling the pressure distribution in cerebral capillary networks. The problem is formulated as an inverse problem with finite-dimensional overdetermination. The unique solvability of the problem is proven. A numerical algorithm is proposed and implemented.

Citation: Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021016
References:
[1]

J. W. BaishP. A. Netti and R. K. Jain, Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors, Microvasc. Res., 53 (1997), 128-141.  doi: 10.1006/mvre.1996.2005.  Google Scholar

[2]

N. D. BotkinA. E. KovtanyukV. L. TurovaI. N. Sidorenko and R. Lampe, Direct modeling of blood flow through the vascular network of the germinal matrix, Comp. Biol. Med., 92 (2018), 147-155.  doi: 10.1016/j.compbiomed.2017.11.010.  Google Scholar

[3]

N. D. Botkin, A. E. Kovtanyuk, V. L. Turova, I. N. Sidorenko and R. Lampe, Accounting for tube hematocrit in modeling of blood flow in cerebral capillary networks, Comp. Math. Meth. Med., 2019 (2019), 4235937. doi: 10.1155/2019/4235937.  Google Scholar

[4]

F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.  Google Scholar

[5]

A.-R. A. Khaled and K. Vafai, The role of porous media in modeling flow and heat transfer in biological tissues, Int. J. Heat Mass Trans., 46 (2003), 4989-5003.  doi: 10.1016/S0017-9310(03)00301-6.  Google Scholar

[6]

A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, V. L. Turova, I. N. Sidorenko and R. Lampe, Nonstationary model of oxygen transport in brain tissue, Comp. Math. Meth. Med., 2020 (2020), 4861654. doi: 10.1155/2020/4861654.  Google Scholar

[7]

A. E. KovtanyukA. Yu. ChebotarevN. D. BotkinV. L. TurovaI. N. Sidorenko and R. Lampe, Continuum model of oxygen transport in brain, J. Math. Anal. Appl., 474 (2019), 1352-1363.  doi: 10.1016/j.jmaa.2019.02.020.  Google Scholar

[8]

A. E. Kovtanyuk, A. Yu. Chebotarev, A. A. Dekalchuk, N. D. Botkin and R. Lampe, Analysis of a mathematical model of oxygen transport in brain, Proc. Int. Conf. Days on Diffraction 2018, (2018), 187–191. doi: 10.1109/DD.2018.8553338.  Google Scholar

[9]

A. E. Kovtanyuk, A. Yu. Chebotarev, A. A. Dekalchuk, N. D. Botkin and R. Lampe, An iterative algorithm for solving an initial boundary value problem of oxygen transport in brain, Proc. Int. Conf. Days on Diffraction 2019, (2019), 99–104. doi: 10.1109/DD46733.2019.9016443.  Google Scholar

[10]

S. K. PiechnikP. A. Chiarelli and P. Jezzard, Modelling vascular reactivity to investigate the basis of the relationship between cerebral blood volume and flow under CO2 manipulation, NeuroImage, 39 (2008), 107-118.  doi: 10.1016/j.neuroimage.2007.08.022.  Google Scholar

[11]

S.-W. Su and S. J. Payne, A two phase model of oxygen transport in cerebral tissue, Proc. 31st Ann. Int. Conf. IEEE Eng. Med. Bio. Soc. (EMBC 2009) (2009) 4921–4924. doi: 10.1109/IEMBS.2009.5332469.  Google Scholar

[12]

S.-W. Su, Modelling Blood Flow and Oxygen Transport in the Human Cerebral Cortex, Ph.D thesis, Oxford University, Depart. Eng. Sci. (2011). Google Scholar

[13]

W. J. VankanJ. M. HuygheJ. D. JanssenA. HusonW. J. G. Hacking and W. Schreiner, Finite element analysis of blood flow through biological tissue, Int. J. Eng. Sci., 35 (1997), 375-385.  doi: 10.1016/S0020-7225(96)00108-5.  Google Scholar

[14]

F. J. M. Walters, Intracranial pressure and cerebral blood flow, Update in Anaesthesia, 8 (1998), 18-23.   Google Scholar

show all references

References:
[1]

J. W. BaishP. A. Netti and R. K. Jain, Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors, Microvasc. Res., 53 (1997), 128-141.  doi: 10.1006/mvre.1996.2005.  Google Scholar

[2]

N. D. BotkinA. E. KovtanyukV. L. TurovaI. N. Sidorenko and R. Lampe, Direct modeling of blood flow through the vascular network of the germinal matrix, Comp. Biol. Med., 92 (2018), 147-155.  doi: 10.1016/j.compbiomed.2017.11.010.  Google Scholar

[3]

N. D. Botkin, A. E. Kovtanyuk, V. L. Turova, I. N. Sidorenko and R. Lampe, Accounting for tube hematocrit in modeling of blood flow in cerebral capillary networks, Comp. Math. Meth. Med., 2019 (2019), 4235937. doi: 10.1155/2019/4235937.  Google Scholar

[4]

F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.  Google Scholar

[5]

A.-R. A. Khaled and K. Vafai, The role of porous media in modeling flow and heat transfer in biological tissues, Int. J. Heat Mass Trans., 46 (2003), 4989-5003.  doi: 10.1016/S0017-9310(03)00301-6.  Google Scholar

[6]

A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, V. L. Turova, I. N. Sidorenko and R. Lampe, Nonstationary model of oxygen transport in brain tissue, Comp. Math. Meth. Med., 2020 (2020), 4861654. doi: 10.1155/2020/4861654.  Google Scholar

[7]

A. E. KovtanyukA. Yu. ChebotarevN. D. BotkinV. L. TurovaI. N. Sidorenko and R. Lampe, Continuum model of oxygen transport in brain, J. Math. Anal. Appl., 474 (2019), 1352-1363.  doi: 10.1016/j.jmaa.2019.02.020.  Google Scholar

[8]

A. E. Kovtanyuk, A. Yu. Chebotarev, A. A. Dekalchuk, N. D. Botkin and R. Lampe, Analysis of a mathematical model of oxygen transport in brain, Proc. Int. Conf. Days on Diffraction 2018, (2018), 187–191. doi: 10.1109/DD.2018.8553338.  Google Scholar

[9]

A. E. Kovtanyuk, A. Yu. Chebotarev, A. A. Dekalchuk, N. D. Botkin and R. Lampe, An iterative algorithm for solving an initial boundary value problem of oxygen transport in brain, Proc. Int. Conf. Days on Diffraction 2019, (2019), 99–104. doi: 10.1109/DD46733.2019.9016443.  Google Scholar

[10]

S. K. PiechnikP. A. Chiarelli and P. Jezzard, Modelling vascular reactivity to investigate the basis of the relationship between cerebral blood volume and flow under CO2 manipulation, NeuroImage, 39 (2008), 107-118.  doi: 10.1016/j.neuroimage.2007.08.022.  Google Scholar

[11]

S.-W. Su and S. J. Payne, A two phase model of oxygen transport in cerebral tissue, Proc. 31st Ann. Int. Conf. IEEE Eng. Med. Bio. Soc. (EMBC 2009) (2009) 4921–4924. doi: 10.1109/IEMBS.2009.5332469.  Google Scholar

[12]

S.-W. Su, Modelling Blood Flow and Oxygen Transport in the Human Cerebral Cortex, Ph.D thesis, Oxford University, Depart. Eng. Sci. (2011). Google Scholar

[13]

W. J. VankanJ. M. HuygheJ. D. JanssenA. HusonW. J. G. Hacking and W. Schreiner, Finite element analysis of blood flow through biological tissue, Int. J. Eng. Sci., 35 (1997), 375-385.  doi: 10.1016/S0020-7225(96)00108-5.  Google Scholar

[14]

F. J. M. Walters, Intracranial pressure and cerebral blood flow, Update in Anaesthesia, 8 (1998), 18-23.   Google Scholar

Figure 1.  Stencil corresponding to the cubic topology
Figure 2.  The pressure distribution
Figure 3.  The absolute velocity distribution
[1]

Alberto M. Gambaruto, João Janela, Alexandra Moura, Adélia Sequeira. Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology. Mathematical Biosciences & Engineering, 2011, 8 (2) : 409-423. doi: 10.3934/mbe.2011.8.409

[2]

Tony Lyons. The 2-component dispersionless Burgers equation arising in the modelling of blood flow. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1563-1576. doi: 10.3934/cpaa.2012.11.1563

[3]

Taebeom Kim, Sunčica Čanić, Giovanna Guidoboni. Existence and uniqueness of a solution to a three-dimensional axially symmetric Biot problem arising in modeling blood flow. Communications on Pure & Applied Analysis, 2010, 9 (4) : 839-865. doi: 10.3934/cpaa.2010.9.839

[4]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[5]

Yang Yang, Jian Zhai. Unique determination of a transversely isotropic perturbation in a linearized inverse boundary value problem for elasticity. Inverse Problems & Imaging, 2019, 13 (6) : 1309-1325. doi: 10.3934/ipi.2019057

[6]

Tong Li, Sunčica Čanić. Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks & Heterogeneous Media, 2009, 4 (3) : 527-536. doi: 10.3934/nhm.2009.4.527

[7]

Tong Li, Kun Zhao. On a quasilinear hyperbolic system in blood flow modeling. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 333-344. doi: 10.3934/dcdsb.2011.16.333

[8]

Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521

[9]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[10]

Irena Pawłow, Wojciech M. Zajączkowski. Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 441-466. doi: 10.3934/dcdss.2011.4.441

[11]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[12]

Sergey Degtyarev. Classical solvability of the multidimensional free boundary problem for the thin film equation with quadratic mobility in the case of partial wetting. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3625-3699. doi: 10.3934/dcds.2017156

[13]

Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok. Effect of branchings on blood flow in the system of human coronary arteries. Mathematical Biosciences & Engineering, 2012, 9 (1) : 199-214. doi: 10.3934/mbe.2012.9.199

[14]

Olivier Delestre, Arthur R. Ghigo, José-Maria Fullana, Pierre-Yves Lagrée. A shallow water with variable pressure model for blood flow simulation. Networks & Heterogeneous Media, 2016, 11 (1) : 69-87. doi: 10.3934/nhm.2016.11.69

[15]

B. Wiwatanapataphee, D. Poltem, Yong Hong Wu, Y. Lenbury. Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft. Mathematical Biosciences & Engineering, 2006, 3 (2) : 371-383. doi: 10.3934/mbe.2006.3.371

[16]

Mette S. Olufsen, Ali Nadim. On deriving lumped models for blood flow and pressure in the systemic arteries. Mathematical Biosciences & Engineering, 2004, 1 (1) : 61-80. doi: 10.3934/mbe.2004.1.61

[17]

Derek H. Justice, H. Joel Trussell, Mette S. Olufsen. Analysis of Blood Flow Velocity and Pressure Signals using the Multipulse Method. Mathematical Biosciences & Engineering, 2006, 3 (2) : 419-440. doi: 10.3934/mbe.2006.3.419

[18]

Marcus A. Khuri. On the local solvability of Darboux's equation. Conference Publications, 2009, 2009 (Special) : 451-456. doi: 10.3934/proc.2009.2009.451

[19]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[20]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (30)
  • HTML views (58)
  • Cited by (0)

[Back to Top]