-
Previous Article
Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations
- MCRF Home
- This Issue
-
Next Article
Optimal control of the transmission rate in compartmental epidemics
A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order
Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Poland |
In the paper, a new Gronwall lemma for functions of two variables with singular integrals is proved. An application to weak relative compactness of the set of solutions to a fractional partial differential equation is given.
References:
[1] |
N. Dunford and B. J. Pettis,
Linear operators on summable functions, Trans. Amer. Math. Soc., 47 (1940), 323-392.
doi: 10.1090/S0002-9947-1940-0002020-4. |
[2] |
D. Idczak, R. Kamocki and M. Majewski,
Nonlinear continuous Fornasini-Marchesini model of fractional order with nonzero initial conditions, Journal of Integral Equations and Applications, 32 (2020), 19-34.
doi: 10.1216/JIE.2020.32.19. |
[3] |
D. Idczak, K. Kibalczyc and S. Walczak,
On an optimization problem with cost of rapid variation of control, J. Aust. Math. Soc. Ser. B., 36 (1994), 117-131.
doi: 10.1017/S0334270000010286. |
[4] |
D. Idczak,
A fractional multiterm Gronwall lemma and its application to stability of fractional integrodifferential systems, Journal of Integral Equations and Applications, 32 (2020), 447-456.
doi: 10.1216/jie.2020.32.447. |
[5] |
R. Kamocki,
Pontryagin maximum principle for fractional ordinary optimal control problems, Mathematical Methods in the Applied Sciences, 37 (2014), 1668-1686.
doi: 10.1002/mma.2928. |
[6] |
M. Majewski,
Stability analysis of an optimal control problem for a hyperbolic equation, J. Optim. Theory Appl., 141 (2009), 127-146.
doi: 10.1007/s10957-008-9504-1. |
[7] |
V. Rehbock, S. Wangs and K. L. Teo,
Computing optimal control with hyperbolic partial differential equation, J. Aust. Math. Soc. Ser. B, 40 (1998), 266-287.
doi: 10.1017/S0334270000012510. |
[8] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1993. |
[9] |
A. N. Tikhonov and A. A. Samarski, Equations of Mathematical Physics, Dover Publications, Inc., New York, 1990. |
[10] |
H. Ye, J. Gao and Y. Ding,
A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061. |
[11] |
Z. Zhang and Z. Wei, A generalized Gronwall inequality and its application to fractional neural evolution inclusions, Journal of Inequalities and Applications, (2016), Paper No. 45, 18 pp.
doi: 10.1186/s13660-016-0991-6. |
show all references
References:
[1] |
N. Dunford and B. J. Pettis,
Linear operators on summable functions, Trans. Amer. Math. Soc., 47 (1940), 323-392.
doi: 10.1090/S0002-9947-1940-0002020-4. |
[2] |
D. Idczak, R. Kamocki and M. Majewski,
Nonlinear continuous Fornasini-Marchesini model of fractional order with nonzero initial conditions, Journal of Integral Equations and Applications, 32 (2020), 19-34.
doi: 10.1216/JIE.2020.32.19. |
[3] |
D. Idczak, K. Kibalczyc and S. Walczak,
On an optimization problem with cost of rapid variation of control, J. Aust. Math. Soc. Ser. B., 36 (1994), 117-131.
doi: 10.1017/S0334270000010286. |
[4] |
D. Idczak,
A fractional multiterm Gronwall lemma and its application to stability of fractional integrodifferential systems, Journal of Integral Equations and Applications, 32 (2020), 447-456.
doi: 10.1216/jie.2020.32.447. |
[5] |
R. Kamocki,
Pontryagin maximum principle for fractional ordinary optimal control problems, Mathematical Methods in the Applied Sciences, 37 (2014), 1668-1686.
doi: 10.1002/mma.2928. |
[6] |
M. Majewski,
Stability analysis of an optimal control problem for a hyperbolic equation, J. Optim. Theory Appl., 141 (2009), 127-146.
doi: 10.1007/s10957-008-9504-1. |
[7] |
V. Rehbock, S. Wangs and K. L. Teo,
Computing optimal control with hyperbolic partial differential equation, J. Aust. Math. Soc. Ser. B, 40 (1998), 266-287.
doi: 10.1017/S0334270000012510. |
[8] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1993. |
[9] |
A. N. Tikhonov and A. A. Samarski, Equations of Mathematical Physics, Dover Publications, Inc., New York, 1990. |
[10] |
H. Ye, J. Gao and Y. Ding,
A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061. |
[11] |
Z. Zhang and Z. Wei, A generalized Gronwall inequality and its application to fractional neural evolution inclusions, Journal of Inequalities and Applications, (2016), Paper No. 45, 18 pp.
doi: 10.1186/s13660-016-0991-6. |
[1] |
Sergio Albeverio, Sonia Mazzucchi. Infinite dimensional integrals and partial differential equations for stochastic and quantum phenomena. Journal of Geometric Mechanics, 2019, 11 (2) : 123-137. doi: 10.3934/jgm.2019006 |
[2] |
Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199 |
[3] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023 |
[4] |
Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591 |
[5] |
Liping Luo, Zhenguo Luo, Yunhui Zeng. New results for oscillation of fractional partial differential equations with damping term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3223-3231. doi: 10.3934/dcdss.2020336 |
[6] |
Jun Zhou, Jun Shen, Weinian Zhang. A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7207-7234. doi: 10.3934/dcds.2016114 |
[7] |
Rehana Naz, Fazal M. Mahomed. Characterization of partial Hamiltonian operators and related first integrals. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 723-734. doi: 10.3934/dcdss.2018045 |
[8] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3803-3819. doi: 10.3934/dcdss.2021019 |
[9] |
Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034 |
[10] |
Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems and Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020 |
[11] |
Susanna V. Haziot. Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4415-4427. doi: 10.3934/dcds.2019179 |
[12] |
Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks and Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9 |
[13] |
Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503 |
[14] |
Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907 |
[15] |
Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747 |
[16] |
Masaki Hibino. Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —. Communications on Pure and Applied Analysis, 2003, 2 (2) : 211-231. doi: 10.3934/cpaa.2003.2.211 |
[17] |
María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473 |
[18] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[19] |
Jacques Giacomoni, Tuhina Mukherjee, Konijeti Sreenadh. Existence and stabilization results for a singular parabolic equation involving the fractional Laplacian. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 311-337. doi: 10.3934/dcdss.2019022 |
[20] |
David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298 |
2021 Impact Factor: 1.141
Tools
Metrics
Other articles
by authors
[Back to Top]