doi: 10.3934/mcrf.2021019

A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order

Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Poland

* Corresponding author: Dariusz Idczak

Received  May 2020 Revised  January 2021 Published  March 2021

In the paper, a new Gronwall lemma for functions of two variables with singular integrals is proved. An application to weak relative compactness of the set of solutions to a fractional partial differential equation is given.

Citation: Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021019
References:
[1]

N. Dunford and B. J. Pettis, Linear operators on summable functions, Trans. Amer. Math. Soc., 47 (1940), 323-392.  doi: 10.1090/S0002-9947-1940-0002020-4.  Google Scholar

[2]

D. IdczakR. Kamocki and M. Majewski, Nonlinear continuous Fornasini-Marchesini model of fractional order with nonzero initial conditions, Journal of Integral Equations and Applications, 32 (2020), 19-34.  doi: 10.1216/JIE.2020.32.19.  Google Scholar

[3]

D. IdczakK. Kibalczyc and S. Walczak, On an optimization problem with cost of rapid variation of control, J. Aust. Math. Soc. Ser. B., 36 (1994), 117-131.  doi: 10.1017/S0334270000010286.  Google Scholar

[4]

D. Idczak, A fractional multiterm Gronwall lemma and its application to stability of fractional integrodifferential systems, Journal of Integral Equations and Applications, 32 (2020), 447-456.  doi: 10.1216/jie.2020.32.447.  Google Scholar

[5]

R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Mathematical Methods in the Applied Sciences, 37 (2014), 1668-1686.  doi: 10.1002/mma.2928.  Google Scholar

[6]

M. Majewski, Stability analysis of an optimal control problem for a hyperbolic equation, J. Optim. Theory Appl., 141 (2009), 127-146.  doi: 10.1007/s10957-008-9504-1.  Google Scholar

[7]

V. RehbockS. Wangs and K. L. Teo, Computing optimal control with hyperbolic partial differential equation, J. Aust. Math. Soc. Ser. B, 40 (1998), 266-287.  doi: 10.1017/S0334270000012510.  Google Scholar

[8]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1993.  Google Scholar

[9]

A. N. Tikhonov and A. A. Samarski, Equations of Mathematical Physics, Dover Publications, Inc., New York, 1990.  Google Scholar

[10]

H. YeJ. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.  doi: 10.1016/j.jmaa.2006.05.061.  Google Scholar

[11]

Z. Zhang and Z. Wei, A generalized Gronwall inequality and its application to fractional neural evolution inclusions, Journal of Inequalities and Applications, (2016), Paper No. 45, 18 pp. doi: 10.1186/s13660-016-0991-6.  Google Scholar

show all references

References:
[1]

N. Dunford and B. J. Pettis, Linear operators on summable functions, Trans. Amer. Math. Soc., 47 (1940), 323-392.  doi: 10.1090/S0002-9947-1940-0002020-4.  Google Scholar

[2]

D. IdczakR. Kamocki and M. Majewski, Nonlinear continuous Fornasini-Marchesini model of fractional order with nonzero initial conditions, Journal of Integral Equations and Applications, 32 (2020), 19-34.  doi: 10.1216/JIE.2020.32.19.  Google Scholar

[3]

D. IdczakK. Kibalczyc and S. Walczak, On an optimization problem with cost of rapid variation of control, J. Aust. Math. Soc. Ser. B., 36 (1994), 117-131.  doi: 10.1017/S0334270000010286.  Google Scholar

[4]

D. Idczak, A fractional multiterm Gronwall lemma and its application to stability of fractional integrodifferential systems, Journal of Integral Equations and Applications, 32 (2020), 447-456.  doi: 10.1216/jie.2020.32.447.  Google Scholar

[5]

R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Mathematical Methods in the Applied Sciences, 37 (2014), 1668-1686.  doi: 10.1002/mma.2928.  Google Scholar

[6]

M. Majewski, Stability analysis of an optimal control problem for a hyperbolic equation, J. Optim. Theory Appl., 141 (2009), 127-146.  doi: 10.1007/s10957-008-9504-1.  Google Scholar

[7]

V. RehbockS. Wangs and K. L. Teo, Computing optimal control with hyperbolic partial differential equation, J. Aust. Math. Soc. Ser. B, 40 (1998), 266-287.  doi: 10.1017/S0334270000012510.  Google Scholar

[8]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1993.  Google Scholar

[9]

A. N. Tikhonov and A. A. Samarski, Equations of Mathematical Physics, Dover Publications, Inc., New York, 1990.  Google Scholar

[10]

H. YeJ. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.  doi: 10.1016/j.jmaa.2006.05.061.  Google Scholar

[11]

Z. Zhang and Z. Wei, A generalized Gronwall inequality and its application to fractional neural evolution inclusions, Journal of Inequalities and Applications, (2016), Paper No. 45, 18 pp. doi: 10.1186/s13660-016-0991-6.  Google Scholar

[1]

Sergio Albeverio, Sonia Mazzucchi. Infinite dimensional integrals and partial differential equations for stochastic and quantum phenomena. Journal of Geometric Mechanics, 2019, 11 (2) : 123-137. doi: 10.3934/jgm.2019006

[2]

Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199

[3]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[4]

Jun Zhou, Jun Shen, Weinian Zhang. A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 7207-7234. doi: 10.3934/dcds.2016114

[5]

Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591

[6]

Liping Luo, Zhenguo Luo, Yunhui Zeng. New results for oscillation of fractional partial differential equations with damping term. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020336

[7]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[8]

Rehana Naz, Fazal M. Mahomed. Characterization of partial Hamiltonian operators and related first integrals. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 723-734. doi: 10.3934/dcdss.2018045

[9]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[10]

Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems & Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020

[11]

Susanna V. Haziot. Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4415-4427. doi: 10.3934/dcds.2019179

[12]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[13]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[14]

Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907

[15]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[16]

Masaki Hibino. Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —. Communications on Pure & Applied Analysis, 2003, 2 (2) : 211-231. doi: 10.3934/cpaa.2003.2.211

[17]

Jacques Giacomoni, Tuhina Mukherjee, Konijeti Sreenadh. Existence and stabilization results for a singular parabolic equation involving the fractional Laplacian. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 311-337. doi: 10.3934/dcdss.2019022

[18]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[19]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[20]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (40)
  • HTML views (55)
  • Cited by (0)

Other articles
by authors

[Back to Top]