This paper addresses the following question: "Suppose that a state-feedback controller stabilizes an infinite-dimensional linear continuous-time system. If we choose the parameters of an event/self-triggering mechanism appropriately, is the event/self-triggered control system stable under all sufficiently small nonlinear Lipschitz perturbations?" We assume that the stabilizing feedback operator is compact. This assumption is used to guarantee the strict positiveness of inter-event times and the existence of the mild solution of evolution equations with unbounded control operators. First, for the case where the control operator is bounded, we show that the answer to the above question is positive, giving a sufficient condition for exponential stability, which can be employed for the design of event/self-triggering mechanisms. Next, we investigate the case where the control operator is unbounded and prove that the answer is still positive for periodic event-triggering mechanisms.
Citation: |
[1] |
A. Anta and P. Tabuada, To sample or not to sample: Self-triggered control for nonlinear systems, IEEE Trans. Automat. Control, 55 (2010), 2030-2042.
doi: 10.1109/TAC.2010.2042980.![]() ![]() ![]() |
[2] |
W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, 96. Birkhäuser Verlag, Basel, 2001.
doi: 10.1007/978-3-0348-5075-9.![]() ![]() ![]() |
[3] |
L. Baudouin, S. Marx and S. Tarbouriech, Event-triggered damping of a linear wave equation, IFAC-PapersOnLine, 52 (2019), 58-63.
doi: 10.1016/j.ifacol.2019.08.011.![]() ![]() ![]() |
[4] |
R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21. Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4224-6.![]() ![]() ![]() |
[5] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000.
![]() ![]() |
[6] |
N. Espitia, A. Girard, N. Marchand and C. Prieur, Event-based control of linear hyperbolic systems of conservation laws, Automatica J. IFAC, 70 (2016), 275-287.
doi: 10.1016/j.automatica.2016.04.009.![]() ![]() ![]() |
[7] |
N. Espitia, A. Girard, N. Marchand and C. Prieur, Event-based boundary control of a linear $2\times 2$ hyperbolic system via backstepping approach, IEEE Trans. Automat. Control, 63 (2018), 2686-2693.
doi: 10.1109/TAC.2017.2774011.![]() ![]() ![]() |
[8] |
L. Etienne, S. Di Gennaro and J.-P. Barbot, Periodic event-triggered observation and control for nonlinear Lipschitz systems using impulsive observers, Int. J. Robust Nonlinear Control, 27 (2017), 4363-4380.
doi: 10.1002/rnc.3802.![]() ![]() ![]() |
[9] |
R. Goebel, R. G. Sanfelice and A. R. Teel, Hybrid dynamical systems: Robust stability and control for systems that combine continuous-time and discrete-time dynamics, IEEE Control Syst. Mag., 29 (2009), 28-93.
doi: 10.1109/MCS.2008.931718.![]() ![]() ![]() |
[10] |
W. P. M. H. Heemels, M. C. F. Donkers and A. R. Teel, Periodic event-triggered control for linear systems, IEEE Trans. Automat. Control, 58 (2013), 847-861.
doi: 10.1109/TAC.2012.2220443.![]() ![]() ![]() |
[11] |
W. P. M. H. Heemels, J. H. Sandee and P. O. J. Van Den Bosch, Analysis of event-driven controllers for linear systems, Int. J. Control, 81 (2008), 571-590.
doi: 10.1080/00207170701506919.![]() ![]() ![]() |
[12] |
A. Ilchmann, Z. Ke and H. Logemann, Indirect sampled-data control with sampling period adaptation, Int. J. Control, 84 (2011), 424-431.
doi: 10.1080/00207179.2011.557782.![]() ![]() ![]() |
[13] |
Z. Jiang, B. Cui, W. Wu and B. Zhuang, Event-driven observer-based control for distributed parameter systems using mobile sensor and actuator, Comput. Math. Appl., 72 (2016), 2854-2864.
doi: 10.1016/j.camwa.2016.10.009.![]() ![]() ![]() |
[14] |
W. Kang and E. Fridman, Distributed sampled-data control of Kuramoto-Sivashinsky equation, Automatica J. IFAC, 95 (2018), 514-524.
doi: 10.1016/j.automatica.2018.06.009.![]() ![]() ![]() |
[15] |
I. Karafyllis and M. Krstic, Sampled-data boundary feedback control of 1-D parabolic PDEs, Automatica J. IFAC, 87 (2018), 226-237.
doi: 10.1016/j.automatica.2017.10.006.![]() ![]() ![]() |
[16] |
I. Karafyllis, M. Krstic and K. Chrysafi, Adaptive boundary control of constant-parameter reaction-diffusion PDEs using regulation-triggered finite-time identification, Automatica J. IFAC, 103 (2019), 166-179.
doi: 10.1016/j.automatica.2019.01.028.![]() ![]() ![]() |
[17] |
Z. Ke, H. Logemann and R. Rebarber, Approximate tracking and disturbance rejection for stable infinite-dimensional systems using sampled-data low-gain control, SIAM J. Control Optim., 48 (2009), 641-671.
doi: 10.1137/080716517.![]() ![]() ![]() |
[18] |
Z. Ke, H. Logemann and R. Rebarber, A sampled-data servomechanism for stable well-posed systems, IEEE Trans. Automat. Control, 54 (2009), 1123-1128.
doi: 10.1109/TAC.2009.2013032.![]() ![]() ![]() |
[19] |
Z. Ke, H. Logemann and S. Townley, Adaptive sampled-data integral control of stable infinite-dimensional linear systems, Systems Control Lett., 58 (2009), 233-240.
doi: 10.1016/j.sysconle.2008.10.015.![]() ![]() ![]() |
[20] |
D. Lehmann and J. Lunze, Event-based control with communication delays and packet losses, Int. J. Control, 85 (2012), 563-577.
doi: 10.1080/00207179.2012.659760.![]() ![]() ![]() |
[21] |
P. Lin, H. Liu and G. Wang, Output feedback stabilization for heat equations with sampled-data controls, J. Differential Equ., 268 (2020), 5823-5854.
doi: 10.1016/j.jde.2019.11.019.![]() ![]() ![]() |
[22] |
H. Logemann, Stabilization of well-posed infinite-dimensional systems by dynamic sampled-data feedback, SIAM J. Control Optim., 51 (2013), 1203-1231.
doi: 10.1137/110850396.![]() ![]() ![]() |
[23] |
H. Logemann, R. Rebarber and S. Townley, Stability of infinite-dimensional sampled-data systems, Trans. Amer. Math. Soc., 355 (2003), 3301-3328.
doi: 10.1090/S0002-9947-03-03142-8.![]() ![]() ![]() |
[24] |
H. Logemann, R. Rebarber and S. Townley, Generalized sampled-data stabilization of well-posed linear infinite-dimensional systems, SIAM J. Control Optim., 44 (2005), 1345-1369.
doi: 10.1137/S0363012903434340.![]() ![]() ![]() |
[25] |
H. Logemann and S. Townley, Discrete-time low-gain control of uncertain infinite-dimensional systems, IEEE Trans. Automat. Control, 42 (1997), 22-37.
doi: 10.1109/9.553685.![]() ![]() ![]() |
[26] |
A. Mironchenko and C. Prieur, Input-to-state stability of infinite-dimensional systems: Recent results and open questions, SIAM Review, 62 (2020), 529-614.
doi: 10.1137/19M1291248.![]() ![]() ![]() |
[27] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.![]() ![]() ![]() |
[28] |
R. Postoyan, R. G. Sanfelice and W. P. M. H. Heemels, Inter-event times analysis for planar linear event-triggered controlled systems, 2019 IEEE 58th Conference on Decision and Control (CDC), (2019), 1662–1667.
doi: 10.1109/CDC40024.2019.9028888.![]() ![]() |
[29] |
R. Rebarber and S. Townley, Generalized sampled data feedback control of distributed parameter systems, Systems Control Lett., 34 (1998), 229-240.
doi: 10.1016/S0167-6911(98)00011-5.![]() ![]() ![]() |
[30] |
R. Rebarber and S. Townley, Nonrobustness of closed-loop stability for infinite-dimensional systems under sample and hold, IEEE Trans. Automat. Control, 47 (2002), 1381-1385.
doi: 10.1109/TAC.2002.801189.![]() ![]() ![]() |
[31] |
R. Rebarber and S. Townley, Robustness with respect to sampling for stabilization of Riesz spectral systems, IEEE Trans. Automat. Control, 51 (2006), 1519-1522.
doi: 10.1109/TAC.2006.880797.![]() ![]() ![]() |
[32] |
A. Selivanov and E. Fridman, Distributed event-triggered control of diffusion semilinear PDEs, Automatica J. IFAC, 68 (2016), 344-351.
doi: 10.1016/j.automatica.2016.02.006.![]() ![]() ![]() |
[33] |
P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, IEEE Trans. Automat. Control, 52 (2007), 1680-1685.
doi: 10.1109/TAC.2007.904277.![]() ![]() ![]() |
[34] |
T. J. Tarn, Jr. R. Zavgern and X. Zeng, Stabilization of infinite-dimensional systems with periodic gains and sampled output, Automatica J. IFAC, 24 (1988), 95-99.
doi: 10.1016/0005-1098(88)90012-X.![]() ![]() ![]() |
[35] |
M. Tucsnak and G. Weiss, Observation and Control of Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8994-9.![]() ![]() ![]() |
[36] |
M. Wakaiki and H. Sano, Event-triggered control of infinite-dimensional systems, SIAM J. Control Optim., 58 (2020), 605-635.
doi: 10.1137/18M1179717.![]() ![]() ![]() |
[37] |
M. Wakaiki and H. Sano, Sampled-data output regulation of unstable well-posed infinite-dimensional systems with constant reference and disturbance signals, Math. Control Signals Systems, 32 (2020), 43-100.
doi: 10.1007/s00498-019-00252-9.![]() ![]() ![]() |
[38] |
M. Wakaiki and Y. Yamamoto, Stability analysis of perturbed infinite-dimensional sampled-data systems, Systems Control Lett., 138 (2020), 104652, 8 pp.
doi: 10.1016/j.sysconle.2020.104652.![]() ![]() ![]() |
[39] |
X. Wang and M. D. Lemmon, Self-triggered feedback control systems with finite-gain $\mathcal{L}_2$ stability, IEEE Trans. Automat. Control, 54 (2009), 452-467.
doi: 10.1109/TAC.2009.2012973.![]() ![]() ![]() |
Event-triggered control system
Self-triggered control system
State norm
Input
Inter-event times
Bound on threshold
Comparison of state norm
Comparison of input
Comparison of inter-event times