doi: 10.3934/mcrf.2021021
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations

Graduate School of System Informatics, Kobe University, Nada, Kobe, Hyogo 657-8501, Japan

* Corresponding author: wakaiki@ruby.kobe-u.ac.jp

Received  June 2020 Revised  January 2021 Early access March 2021

Fund Project: The first author is supported by JSPS KAKENHI Grant Numbers JP20K14362

This paper addresses the following question: "Suppose that a state-feedback controller stabilizes an infinite-dimensional linear continuous-time system. If we choose the parameters of an event/self-triggering mechanism appropriately, is the event/self-triggered control system stable under all sufficiently small nonlinear Lipschitz perturbations?" We assume that the stabilizing feedback operator is compact. This assumption is used to guarantee the strict positiveness of inter-event times and the existence of the mild solution of evolution equations with unbounded control operators. First, for the case where the control operator is bounded, we show that the answer to the above question is positive, giving a sufficient condition for exponential stability, which can be employed for the design of event/self-triggering mechanisms. Next, we investigate the case where the control operator is unbounded and prove that the answer is still positive for periodic event-triggering mechanisms.

Citation: Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021021
References:
[1]

A. Anta and P. Tabuada, To sample or not to sample: Self-triggered control for nonlinear systems, IEEE Trans. Automat. Control, 55 (2010), 2030-2042.  doi: 10.1109/TAC.2010.2042980.  Google Scholar

[2]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, 96. Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-5075-9.  Google Scholar

[3]

L. BaudouinS. Marx and S. Tarbouriech, Event-triggered damping of a linear wave equation, IFAC-PapersOnLine, 52 (2019), 58-63.  doi: 10.1016/j.ifacol.2019.08.011.  Google Scholar

[4]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[5]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000.  Google Scholar

[6]

N. EspitiaA. GirardN. Marchand and C. Prieur, Event-based control of linear hyperbolic systems of conservation laws, Automatica J. IFAC, 70 (2016), 275-287.  doi: 10.1016/j.automatica.2016.04.009.  Google Scholar

[7]

N. EspitiaA. GirardN. Marchand and C. Prieur, Event-based boundary control of a linear $2\times 2$ hyperbolic system via backstepping approach, IEEE Trans. Automat. Control, 63 (2018), 2686-2693.  doi: 10.1109/TAC.2017.2774011.  Google Scholar

[8]

L. EtienneS. Di Gennaro and J.-P. Barbot, Periodic event-triggered observation and control for nonlinear Lipschitz systems using impulsive observers, Int. J. Robust Nonlinear Control, 27 (2017), 4363-4380.  doi: 10.1002/rnc.3802.  Google Scholar

[9]

R. GoebelR. G. Sanfelice and A. R. Teel, Hybrid dynamical systems: Robust stability and control for systems that combine continuous-time and discrete-time dynamics, IEEE Control Syst. Mag., 29 (2009), 28-93.  doi: 10.1109/MCS.2008.931718.  Google Scholar

[10]

W. P. M. H. HeemelsM. C. F. Donkers and A. R. Teel, Periodic event-triggered control for linear systems, IEEE Trans. Automat. Control, 58 (2013), 847-861.  doi: 10.1109/TAC.2012.2220443.  Google Scholar

[11]

W. P. M. H. HeemelsJ. H. Sandee and P. O. J. Van Den Bosch, Analysis of event-driven controllers for linear systems, Int. J. Control, 81 (2008), 571-590.  doi: 10.1080/00207170701506919.  Google Scholar

[12]

A. IlchmannZ. Ke and H. Logemann, Indirect sampled-data control with sampling period adaptation, Int. J. Control, 84 (2011), 424-431.  doi: 10.1080/00207179.2011.557782.  Google Scholar

[13]

Z. JiangB. CuiW. Wu and B. Zhuang, Event-driven observer-based control for distributed parameter systems using mobile sensor and actuator, Comput. Math. Appl., 72 (2016), 2854-2864.  doi: 10.1016/j.camwa.2016.10.009.  Google Scholar

[14]

W. Kang and E. Fridman, Distributed sampled-data control of Kuramoto-Sivashinsky equation, Automatica J. IFAC, 95 (2018), 514-524.  doi: 10.1016/j.automatica.2018.06.009.  Google Scholar

[15]

I. Karafyllis and M. Krstic, Sampled-data boundary feedback control of 1-D parabolic PDEs, Automatica J. IFAC, 87 (2018), 226-237.  doi: 10.1016/j.automatica.2017.10.006.  Google Scholar

[16]

I. KarafyllisM. Krstic and K. Chrysafi, Adaptive boundary control of constant-parameter reaction-diffusion PDEs using regulation-triggered finite-time identification, Automatica J. IFAC, 103 (2019), 166-179.  doi: 10.1016/j.automatica.2019.01.028.  Google Scholar

[17]

Z. KeH. Logemann and R. Rebarber, Approximate tracking and disturbance rejection for stable infinite-dimensional systems using sampled-data low-gain control, SIAM J. Control Optim., 48 (2009), 641-671.  doi: 10.1137/080716517.  Google Scholar

[18]

Z. KeH. Logemann and R. Rebarber, A sampled-data servomechanism for stable well-posed systems, IEEE Trans. Automat. Control, 54 (2009), 1123-1128.  doi: 10.1109/TAC.2009.2013032.  Google Scholar

[19]

Z. KeH. Logemann and S. Townley, Adaptive sampled-data integral control of stable infinite-dimensional linear systems, Systems Control Lett., 58 (2009), 233-240.  doi: 10.1016/j.sysconle.2008.10.015.  Google Scholar

[20]

D. Lehmann and J. Lunze, Event-based control with communication delays and packet losses, Int. J. Control, 85 (2012), 563-577.  doi: 10.1080/00207179.2012.659760.  Google Scholar

[21]

P. LinH. Liu and G. Wang, Output feedback stabilization for heat equations with sampled-data controls, J. Differential Equ., 268 (2020), 5823-5854.  doi: 10.1016/j.jde.2019.11.019.  Google Scholar

[22]

H. Logemann, Stabilization of well-posed infinite-dimensional systems by dynamic sampled-data feedback, SIAM J. Control Optim., 51 (2013), 1203-1231.  doi: 10.1137/110850396.  Google Scholar

[23]

H. LogemannR. Rebarber and S. Townley, Stability of infinite-dimensional sampled-data systems, Trans. Amer. Math. Soc., 355 (2003), 3301-3328.  doi: 10.1090/S0002-9947-03-03142-8.  Google Scholar

[24]

H. LogemannR. Rebarber and S. Townley, Generalized sampled-data stabilization of well-posed linear infinite-dimensional systems, SIAM J. Control Optim., 44 (2005), 1345-1369.  doi: 10.1137/S0363012903434340.  Google Scholar

[25]

H. Logemann and S. Townley, Discrete-time low-gain control of uncertain infinite-dimensional systems, IEEE Trans. Automat. Control, 42 (1997), 22-37.  doi: 10.1109/9.553685.  Google Scholar

[26]

A. Mironchenko and C. Prieur, Input-to-state stability of infinite-dimensional systems: Recent results and open questions, SIAM Review, 62 (2020), 529-614.  doi: 10.1137/19M1291248.  Google Scholar

[27]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[28]

R. Postoyan, R. G. Sanfelice and W. P. M. H. Heemels, Inter-event times analysis for planar linear event-triggered controlled systems, 2019 IEEE 58th Conference on Decision and Control (CDC), (2019), 1662–1667. doi: 10.1109/CDC40024.2019.9028888.  Google Scholar

[29]

R. Rebarber and S. Townley, Generalized sampled data feedback control of distributed parameter systems, Systems Control Lett., 34 (1998), 229-240.  doi: 10.1016/S0167-6911(98)00011-5.  Google Scholar

[30]

R. Rebarber and S. Townley, Nonrobustness of closed-loop stability for infinite-dimensional systems under sample and hold, IEEE Trans. Automat. Control, 47 (2002), 1381-1385.  doi: 10.1109/TAC.2002.801189.  Google Scholar

[31]

R. Rebarber and S. Townley, Robustness with respect to sampling for stabilization of Riesz spectral systems, IEEE Trans. Automat. Control, 51 (2006), 1519-1522.  doi: 10.1109/TAC.2006.880797.  Google Scholar

[32]

A. Selivanov and E. Fridman, Distributed event-triggered control of diffusion semilinear PDEs, Automatica J. IFAC, 68 (2016), 344-351.  doi: 10.1016/j.automatica.2016.02.006.  Google Scholar

[33]

P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, IEEE Trans. Automat. Control, 52 (2007), 1680-1685.  doi: 10.1109/TAC.2007.904277.  Google Scholar

[34]

T. J. TarnJr. R. Zavgern and X. Zeng, Stabilization of infinite-dimensional systems with periodic gains and sampled output, Automatica J. IFAC, 24 (1988), 95-99.  doi: 10.1016/0005-1098(88)90012-X.  Google Scholar

[35]

M. Tucsnak and G. Weiss, Observation and Control of Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[36]

M. Wakaiki and H. Sano, Event-triggered control of infinite-dimensional systems, SIAM J. Control Optim., 58 (2020), 605-635.  doi: 10.1137/18M1179717.  Google Scholar

[37]

M. Wakaiki and H. Sano, Sampled-data output regulation of unstable well-posed infinite-dimensional systems with constant reference and disturbance signals, Math. Control Signals Systems, 32 (2020), 43-100.  doi: 10.1007/s00498-019-00252-9.  Google Scholar

[38]

M. Wakaiki and Y. Yamamoto, Stability analysis of perturbed infinite-dimensional sampled-data systems, Systems Control Lett., 138 (2020), 104652, 8 pp. doi: 10.1016/j.sysconle.2020.104652.  Google Scholar

[39]

X. Wang and M. D. Lemmon, Self-triggered feedback control systems with finite-gain $\mathcal{L}_2$ stability, IEEE Trans. Automat. Control, 54 (2009), 452-467.  doi: 10.1109/TAC.2009.2012973.  Google Scholar

show all references

References:
[1]

A. Anta and P. Tabuada, To sample or not to sample: Self-triggered control for nonlinear systems, IEEE Trans. Automat. Control, 55 (2010), 2030-2042.  doi: 10.1109/TAC.2010.2042980.  Google Scholar

[2]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, 96. Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-5075-9.  Google Scholar

[3]

L. BaudouinS. Marx and S. Tarbouriech, Event-triggered damping of a linear wave equation, IFAC-PapersOnLine, 52 (2019), 58-63.  doi: 10.1016/j.ifacol.2019.08.011.  Google Scholar

[4]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[5]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000.  Google Scholar

[6]

N. EspitiaA. GirardN. Marchand and C. Prieur, Event-based control of linear hyperbolic systems of conservation laws, Automatica J. IFAC, 70 (2016), 275-287.  doi: 10.1016/j.automatica.2016.04.009.  Google Scholar

[7]

N. EspitiaA. GirardN. Marchand and C. Prieur, Event-based boundary control of a linear $2\times 2$ hyperbolic system via backstepping approach, IEEE Trans. Automat. Control, 63 (2018), 2686-2693.  doi: 10.1109/TAC.2017.2774011.  Google Scholar

[8]

L. EtienneS. Di Gennaro and J.-P. Barbot, Periodic event-triggered observation and control for nonlinear Lipschitz systems using impulsive observers, Int. J. Robust Nonlinear Control, 27 (2017), 4363-4380.  doi: 10.1002/rnc.3802.  Google Scholar

[9]

R. GoebelR. G. Sanfelice and A. R. Teel, Hybrid dynamical systems: Robust stability and control for systems that combine continuous-time and discrete-time dynamics, IEEE Control Syst. Mag., 29 (2009), 28-93.  doi: 10.1109/MCS.2008.931718.  Google Scholar

[10]

W. P. M. H. HeemelsM. C. F. Donkers and A. R. Teel, Periodic event-triggered control for linear systems, IEEE Trans. Automat. Control, 58 (2013), 847-861.  doi: 10.1109/TAC.2012.2220443.  Google Scholar

[11]

W. P. M. H. HeemelsJ. H. Sandee and P. O. J. Van Den Bosch, Analysis of event-driven controllers for linear systems, Int. J. Control, 81 (2008), 571-590.  doi: 10.1080/00207170701506919.  Google Scholar

[12]

A. IlchmannZ. Ke and H. Logemann, Indirect sampled-data control with sampling period adaptation, Int. J. Control, 84 (2011), 424-431.  doi: 10.1080/00207179.2011.557782.  Google Scholar

[13]

Z. JiangB. CuiW. Wu and B. Zhuang, Event-driven observer-based control for distributed parameter systems using mobile sensor and actuator, Comput. Math. Appl., 72 (2016), 2854-2864.  doi: 10.1016/j.camwa.2016.10.009.  Google Scholar

[14]

W. Kang and E. Fridman, Distributed sampled-data control of Kuramoto-Sivashinsky equation, Automatica J. IFAC, 95 (2018), 514-524.  doi: 10.1016/j.automatica.2018.06.009.  Google Scholar

[15]

I. Karafyllis and M. Krstic, Sampled-data boundary feedback control of 1-D parabolic PDEs, Automatica J. IFAC, 87 (2018), 226-237.  doi: 10.1016/j.automatica.2017.10.006.  Google Scholar

[16]

I. KarafyllisM. Krstic and K. Chrysafi, Adaptive boundary control of constant-parameter reaction-diffusion PDEs using regulation-triggered finite-time identification, Automatica J. IFAC, 103 (2019), 166-179.  doi: 10.1016/j.automatica.2019.01.028.  Google Scholar

[17]

Z. KeH. Logemann and R. Rebarber, Approximate tracking and disturbance rejection for stable infinite-dimensional systems using sampled-data low-gain control, SIAM J. Control Optim., 48 (2009), 641-671.  doi: 10.1137/080716517.  Google Scholar

[18]

Z. KeH. Logemann and R. Rebarber, A sampled-data servomechanism for stable well-posed systems, IEEE Trans. Automat. Control, 54 (2009), 1123-1128.  doi: 10.1109/TAC.2009.2013032.  Google Scholar

[19]

Z. KeH. Logemann and S. Townley, Adaptive sampled-data integral control of stable infinite-dimensional linear systems, Systems Control Lett., 58 (2009), 233-240.  doi: 10.1016/j.sysconle.2008.10.015.  Google Scholar

[20]

D. Lehmann and J. Lunze, Event-based control with communication delays and packet losses, Int. J. Control, 85 (2012), 563-577.  doi: 10.1080/00207179.2012.659760.  Google Scholar

[21]

P. LinH. Liu and G. Wang, Output feedback stabilization for heat equations with sampled-data controls, J. Differential Equ., 268 (2020), 5823-5854.  doi: 10.1016/j.jde.2019.11.019.  Google Scholar

[22]

H. Logemann, Stabilization of well-posed infinite-dimensional systems by dynamic sampled-data feedback, SIAM J. Control Optim., 51 (2013), 1203-1231.  doi: 10.1137/110850396.  Google Scholar

[23]

H. LogemannR. Rebarber and S. Townley, Stability of infinite-dimensional sampled-data systems, Trans. Amer. Math. Soc., 355 (2003), 3301-3328.  doi: 10.1090/S0002-9947-03-03142-8.  Google Scholar

[24]

H. LogemannR. Rebarber and S. Townley, Generalized sampled-data stabilization of well-posed linear infinite-dimensional systems, SIAM J. Control Optim., 44 (2005), 1345-1369.  doi: 10.1137/S0363012903434340.  Google Scholar

[25]

H. Logemann and S. Townley, Discrete-time low-gain control of uncertain infinite-dimensional systems, IEEE Trans. Automat. Control, 42 (1997), 22-37.  doi: 10.1109/9.553685.  Google Scholar

[26]

A. Mironchenko and C. Prieur, Input-to-state stability of infinite-dimensional systems: Recent results and open questions, SIAM Review, 62 (2020), 529-614.  doi: 10.1137/19M1291248.  Google Scholar

[27]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[28]

R. Postoyan, R. G. Sanfelice and W. P. M. H. Heemels, Inter-event times analysis for planar linear event-triggered controlled systems, 2019 IEEE 58th Conference on Decision and Control (CDC), (2019), 1662–1667. doi: 10.1109/CDC40024.2019.9028888.  Google Scholar

[29]

R. Rebarber and S. Townley, Generalized sampled data feedback control of distributed parameter systems, Systems Control Lett., 34 (1998), 229-240.  doi: 10.1016/S0167-6911(98)00011-5.  Google Scholar

[30]

R. Rebarber and S. Townley, Nonrobustness of closed-loop stability for infinite-dimensional systems under sample and hold, IEEE Trans. Automat. Control, 47 (2002), 1381-1385.  doi: 10.1109/TAC.2002.801189.  Google Scholar

[31]

R. Rebarber and S. Townley, Robustness with respect to sampling for stabilization of Riesz spectral systems, IEEE Trans. Automat. Control, 51 (2006), 1519-1522.  doi: 10.1109/TAC.2006.880797.  Google Scholar

[32]

A. Selivanov and E. Fridman, Distributed event-triggered control of diffusion semilinear PDEs, Automatica J. IFAC, 68 (2016), 344-351.  doi: 10.1016/j.automatica.2016.02.006.  Google Scholar

[33]

P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, IEEE Trans. Automat. Control, 52 (2007), 1680-1685.  doi: 10.1109/TAC.2007.904277.  Google Scholar

[34]

T. J. TarnJr. R. Zavgern and X. Zeng, Stabilization of infinite-dimensional systems with periodic gains and sampled output, Automatica J. IFAC, 24 (1988), 95-99.  doi: 10.1016/0005-1098(88)90012-X.  Google Scholar

[35]

M. Tucsnak and G. Weiss, Observation and Control of Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[36]

M. Wakaiki and H. Sano, Event-triggered control of infinite-dimensional systems, SIAM J. Control Optim., 58 (2020), 605-635.  doi: 10.1137/18M1179717.  Google Scholar

[37]

M. Wakaiki and H. Sano, Sampled-data output regulation of unstable well-posed infinite-dimensional systems with constant reference and disturbance signals, Math. Control Signals Systems, 32 (2020), 43-100.  doi: 10.1007/s00498-019-00252-9.  Google Scholar

[38]

M. Wakaiki and Y. Yamamoto, Stability analysis of perturbed infinite-dimensional sampled-data systems, Systems Control Lett., 138 (2020), 104652, 8 pp. doi: 10.1016/j.sysconle.2020.104652.  Google Scholar

[39]

X. Wang and M. D. Lemmon, Self-triggered feedback control systems with finite-gain $\mathcal{L}_2$ stability, IEEE Trans. Automat. Control, 54 (2009), 452-467.  doi: 10.1109/TAC.2009.2012973.  Google Scholar

Figure 1.  Event-triggered control system
Figure 2.  Self-triggered control system
Figure 3.  State norm $ \|x(t)\| $ of self-triggered control system
Figure 4.  Input $ u(t) $ of self-triggered control system
Figure 5.  Inter-event times $ t_{k+1} - t_k $ of self-triggered control system
Figure 6.  Bound on threshold $ \varepsilon $ and lower bound $ \tau_{\min} $ of inter-event times of event-triggering mechanism (27)
Figure 7.  Comparison of state norm $ \|x(t)\| $ between event-triggered control system and periodic sampled-data system
Figure 8.  Comparison of input $ u(t) $ between event-triggered control system and periodic sampled-data system
Figure 9.  Comparison of inter-event times $ t_{k+1}-t_k $ between event-triggered control system and periodic sampled-data system
[1]

Peng Cheng, Yanqing Liu, Yanyan Yin, Song Wang, Feng Pan. Fuzzy event-triggered disturbance rejection control of nonlinear systems. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3297-3307. doi: 10.3934/jimo.2020119

[2]

Hongru Ren, Shubo Li, Changxin Lu. Event-triggered adaptive fault-tolerant control for multi-agent systems with unknown disturbances. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1395-1414. doi: 10.3934/dcdss.2020379

[3]

Yuan Xu, Xin Jin, Saiwei Wang, Yang Tang. Optimal synchronization control of multiple euler-lagrange systems via event-triggered reinforcement learning. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1495-1518. doi: 10.3934/dcdss.2020377

[4]

Liqiang Jin, Yanyan Yin, Kok Lay Teo, Fei Liu. Event-triggered mixed $ H_\infty $ and passive control for Markov jump systems with bounded inputs. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1343-1355. doi: 10.3934/jimo.2020024

[5]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001

[6]

Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations & Control Theory, 2021, 10 (2) : 385-409. doi: 10.3934/eect.2020072

[7]

Didier Georges. Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks & Heterogeneous Media, 2009, 4 (2) : 267-285. doi: 10.3934/nhm.2009.4.267

[8]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[9]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[10]

Vincent Renault, Michèle Thieullen, Emmanuel Trélat. Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks & Heterogeneous Media, 2017, 12 (3) : 417-459. doi: 10.3934/nhm.2017019

[11]

Marius Tucsnak. Preface to the special issue on control of infinite dimensional systems. Mathematical Control & Related Fields, 2019, 9 (4) : i-ii. doi: 10.3934/mcrf.2019042

[12]

Georg Vossen, Torsten Hermanns. On an optimal control problem in laser cutting with mixed finite-/infinite-dimensional constraints. Journal of Industrial & Management Optimization, 2014, 10 (2) : 503-519. doi: 10.3934/jimo.2014.10.503

[13]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial & Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[14]

Qiying Hu, Wuyi Yue. Optimal control for discrete event systems with arbitrary control pattern. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 535-558. doi: 10.3934/dcdsb.2006.6.535

[15]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[16]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[17]

Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control & Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83

[18]

Alfonso Artigue. Lipschitz perturbations of expansive systems. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1829-1841. doi: 10.3934/dcds.2015.35.1829

[19]

Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012

[20]

Sergey V Lototsky, Henry Schellhorn, Ran Zhao. An infinite-dimensional model of liquidity in financial markets. Probability, Uncertainty and Quantitative Risk, 2021, 6 (2) : 117-138. doi: 10.3934/puqr.2021006

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (63)
  • HTML views (203)
  • Cited by (0)

Other articles
by authors

[Back to Top]