Advanced Search
Article Contents
Article Contents

Optimal control of perfect plasticity part I: Stress tracking

  • * Corresponding author: Christian Meyer

    * Corresponding author: Christian Meyer 

This research was supported by the German Research Foundation (DFG) under grant number ME 3281/9-1 within the priority program Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization (SPP 1962)

Abstract Full Text(HTML) Figure(3) / Table(2) Related Papers Cited by
  • The paper is concerned with an optimal control problem governed by the rate-independent system of quasi-static perfect elasto-plasticity. The objective is to optimize the stress field by controlling the displacement at prescribed parts of the boundary. The control thus enters the system in the Dirichlet boundary conditions. Therefore, the safe load condition is automatically fulfilled so that the system admits a solution, whose stress field is unique. This gives rise to a well defined control-to-state operator, which is continuous but not Gâteaux differentiable. The control-to-state map is therefore regularized, first by means of the Yosida regularization resp. viscous approximation and then by a second smoothing in order to obtain a smooth problem. The approximation of global minimizers of the original non-smooth optimal control problem is shown and optimality conditions for the regularized problem are established. A numerical example illustrates the feasibility of the smoothing approach.

    Mathematics Subject Classification: 49J20, 49K20, 65K10, 74C05, 74C10.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Legend; values in $ \big[{ \rm{GPa}}\big] $

    Figure 2.  Evolution of $ |\sigma(x,t)|_F $

    Figure 3.  Zoom to the left part of the beam from the left column of Figure 2

    Table 1.  Comparison of the numerical results for different values of $ \lambda $

    $ \lambda $ iteration $ \langle {g_h} , {-g_h} \rangle_{H^1_0( \mathcal{X}_c)} $ $ \frac{F_\delta(\ell_h - \tau \,g_h) - F_\delta(\ell_h)}{\tau} $ err $ \operatorname{dist}_ \mathcal{K} $
    0.001 100 -4.7174e-07 -4.8520e-07 0.027751 0.00048
    0.01 25 -2.0089e-07 -2.0869e-07 0.037369 0.00192
    0.1 33 -2.4687e-07 -2.5552e-07 0.033854 0.01781
    1 58 -2.1643e-07 -2.1790e-07 0.006773 0.13652
    10 100 -2.0106e-06 -2.0122e-06 0.000833 0.62584
    100 62 -2.4884e-07 -2.4876e-07 0.000338 5.31148
     | Show Table
    DownLoad: CSV

    Table 2.  Comparison of the numerical results for different numbers of time steps

    $ n_t $ iteration $ \langle {g_h} , {-g_h} \rangle_{H^1_0( \mathcal{X}_c)} $ $ \frac{F_\delta(\ell_h - \tau \,g_h) - F_\delta(\ell_h)}{\tau} $ err $ \operatorname{dist}_ \mathcal{K} $
    8 51 -2.3590e-07 -2.8903e-07 0.183828 0.0478
    32 45 -2.4318e-07 -2.5225e-07 0.035941 0.1066
    128 58 -2.1643e-07 -2.1790e-07 0.006773 0.1365
    512 48 -2.2542e-07 -2.2541e-07 0.000045 0.1318
    2048 41 -2.3150e-07 -2.3165e-07 0.000662 0.1339
     | Show Table
    DownLoad: CSV
  • [1] S. BartelsA. Mielke and T. Roubíček, Quasi-static small-strain plasticity in the limit of vanishing hardening and its numerical approximation, SIAM Journal on Numerical Analysis, 50 (2012), 951-976.  doi: 10.1137/100819205.
    [2] H. Brézis, Opérateurs Maximaux Monotones, North-Holland, Amsterdam, 1973.
    [3] E. Casas and J.-P. Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations, SIAM Journal on Control and Optimization, 45 (2006), 1586-1611.  doi: 10.1137/050626600.
    [4] S. ChowdhuryT. Gudi and A. K. Nandakumaran, Error bounds for a Dirichlet boundary control problem based on energy spaces, Mathematics of Computation, 86 (2017), 1103-1126.  doi: 10.1090/mcom/3125.
    [5] G. Dal MasoA. DeSimone and M. G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Archive for Rational Mechanics and Analysis, 180 (2006), 237-291.  doi: 10.1007/s00205-005-0407-0.
    [6] K. Gröger, A $W^{1, p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann., 283 (1989), 679-687.  doi: 10.1007/BF01442860.
    [7] T. Gudi and R. Ch. Sau, Finite element analysis of the constrained Dirichlet boundary control problem governed by the diffusion problem, ESAIM: Control, Optimisation and Calculus of Variations, 26 (2020), Paper No. 78, 19 pp. doi: 10.1051/cocv/2019068.
    [8] W. Han and B. D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, Second edition, Interdisciplinary Applied Mathematics, 9. Springer, New York, 2013. doi: 10.1007/978-1-4614-5940-8.
    [9] R. Herzog and C. Meyer, Optimal control of static plasticity with linear kinematic hardening, ZAMM Z. Angew. Math. Mech., 91 (2011), 777-794.  doi: 10.1002/zamm.200900378.
    [10] R. HerzogC. Meyer and G. Wachsmuth, B- and strong stationarity for optimal control of static plasticity with hardening, SIAM Journal on Optimization, 23 (2013), 321-352.  doi: 10.1137/110821147.
    [11] R. HerzogC. Meyer and G. Wachsmuth, Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions, Journal of Mathematical Analysis and Applications, 382 (2011), 802-813.  doi: 10.1016/j.jmaa.2011.04.074.
    [12] R. HerzogC. Meyer and G. Wachsmuth, C-stationarity for optimal control of static plasticity with linear kinematic hardening, SIAM Journal on Control and Optimization, 50 (2012), 3052-3082.  doi: 10.1137/100809325.
    [13] C. Johnson, Existence theorems for plasticity problems, J. Math. Pures Appl., 55 (1976), 431-444. 
    [14] A. MauryG. Allaire and F. Jouve, Elasto-plastic shape optimization using the level set method, SIAM Journal on Control and Optimization, 56 (2018), 556-581.  doi: 10.1137/17M1128940.
    [15] S. MayR. Rannacher and B. Vexler, Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems, SIAM Journal on Control and Optimization, 51 (2013), 2585-2611.  doi: 10.1137/080735734.
    [16] C. Meyer and S. Walther, Optimal control of perfect plasticity, part Ⅱ: Displacement tracking, preprint, 2020, arXiv: 2003.09619.
    [17] A. Mielke and T. Roubíček, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193. Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.
    [18] N. Ottosen and M. Ristinmaa, The Mechanics of Constitutive Modeling, Elsevier, Amsterdam, 2005.
    [19] J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Interdisciplinary Applied Mathematics, 7. Springer-Verlag, New York, 1998.
    [20] U. StefanelliD. Wachsmuth and G. Wachsmuth, Optimal control of a rate-independent evolution equation via viscous regularization, Discrete and Continuous Dynamical Systems. Series S, 10 (2017), 1467-1485.  doi: 10.3934/dcdss.2017076.
    [21] P.-M. Suquet, Sur les équations de la plasticité: Existence et régularité des solutions, Journal de Mécanique, 20 (1981), 3–39.
    [22] R. Temam, Mathematical Problems in Plasticity, Courier Dover Publications, 2018.
    [23] G. Wachsmuth, Optimal Control of Quasistatic Plasticity, PhD thesis, TU Chemnitz, 2011.
    [24] G. Wachsmuth, Optimal control of quasi-static plasticity with linear kinematic hardening, Part Ⅰ: Existence and discretization in time, SIAM Journal on Control and Optimization, 50 (2012), 2836–2861 + loose erratum. doi: 10.1137/110839187.
    [25] G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening Ⅱ: Regularization and differentiability, Z. Anal. Anwend., 34 (2015), 391-418.  doi: 10.4171/ZAA/1546.
    [26] G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening Ⅲ: Optimality conditions, Z. Anal. Anwend., 35 (2016), 81-118.  doi: 10.4171/ZAA/1556.
    [27] S. Walther, C. Meyer and H. Meinlschmidt, Optimal control of an abstract evolution variational inequality with application to homogenized plasticity, Journal of Nonsmooth Analysis and Optimization, 1.
  • 加载中




Article Metrics

HTML views(618) PDF downloads(548) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint