
-
Previous Article
Solvable approximations of 3-dimensional almost-Riemannian structures
- MCRF Home
- This Issue
- Next Article
Optimal control of perfect plasticity part I: Stress tracking
TU Dortmund, Faculty of Mathematics, Vogelpothsweg 87, 44227 Dortmund, Germany |
The paper is concerned with an optimal control problem governed by the rate-independent system of quasi-static perfect elasto-plasticity. The objective is to optimize the stress field by controlling the displacement at prescribed parts of the boundary. The control thus enters the system in the Dirichlet boundary conditions. Therefore, the safe load condition is automatically fulfilled so that the system admits a solution, whose stress field is unique. This gives rise to a well defined control-to-state operator, which is continuous but not Gâteaux differentiable. The control-to-state map is therefore regularized, first by means of the Yosida regularization resp. viscous approximation and then by a second smoothing in order to obtain a smooth problem. The approximation of global minimizers of the original non-smooth optimal control problem is shown and optimality conditions for the regularized problem are established. A numerical example illustrates the feasibility of the smoothing approach.
References:
[1] |
S. Bartels, A. Mielke and T. Roubíček,
Quasi-static small-strain plasticity in the limit of vanishing hardening and its numerical approximation, SIAM Journal on Numerical Analysis, 50 (2012), 951-976.
doi: 10.1137/100819205. |
[2] |
H. Brézis, Opérateurs Maximaux Monotones, North-Holland, Amsterdam, 1973. |
[3] |
E. Casas and J.-P. Raymond,
Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations, SIAM Journal on Control and Optimization, 45 (2006), 1586-1611.
doi: 10.1137/050626600. |
[4] |
S. Chowdhury, T. Gudi and A. K. Nandakumaran,
Error bounds for a Dirichlet boundary control problem based on energy spaces, Mathematics of Computation, 86 (2017), 1103-1126.
doi: 10.1090/mcom/3125. |
[5] |
G. Dal Maso, A. DeSimone and M. G. Mora,
Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Archive for Rational Mechanics and Analysis, 180 (2006), 237-291.
doi: 10.1007/s00205-005-0407-0. |
[6] |
K. Gröger,
A $W^{1, p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann., 283 (1989), 679-687.
doi: 10.1007/BF01442860. |
[7] |
T. Gudi and R. Ch. Sau, Finite element analysis of the constrained Dirichlet boundary control problem governed by the diffusion problem, ESAIM: Control, Optimisation and Calculus of Variations, 26 (2020), Paper No. 78, 19 pp.
doi: 10.1051/cocv/2019068. |
[8] |
W. Han and B. D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, Second edition, Interdisciplinary Applied Mathematics, 9. Springer, New York, 2013.
doi: 10.1007/978-1-4614-5940-8. |
[9] |
R. Herzog and C. Meyer,
Optimal control of static plasticity with linear kinematic hardening, ZAMM Z. Angew. Math. Mech., 91 (2011), 777-794.
doi: 10.1002/zamm.200900378. |
[10] |
R. Herzog, C. Meyer and G. Wachsmuth,
B- and strong stationarity for optimal control of static plasticity with hardening, SIAM Journal on Optimization, 23 (2013), 321-352.
doi: 10.1137/110821147. |
[11] |
R. Herzog, C. Meyer and G. Wachsmuth,
Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions, Journal of Mathematical Analysis and Applications, 382 (2011), 802-813.
doi: 10.1016/j.jmaa.2011.04.074. |
[12] |
R. Herzog, C. Meyer and G. Wachsmuth,
C-stationarity for optimal control of static plasticity with linear kinematic hardening, SIAM Journal on Control and Optimization, 50 (2012), 3052-3082.
doi: 10.1137/100809325. |
[13] |
C. Johnson,
Existence theorems for plasticity problems, J. Math. Pures Appl., 55 (1976), 431-444.
|
[14] |
A. Maury, G. Allaire and F. Jouve,
Elasto-plastic shape optimization using the level set method, SIAM Journal on Control and Optimization, 56 (2018), 556-581.
doi: 10.1137/17M1128940. |
[15] |
S. May, R. Rannacher and B. Vexler,
Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems, SIAM Journal on Control and Optimization, 51 (2013), 2585-2611.
doi: 10.1137/080735734. |
[16] |
C. Meyer and S. Walther, Optimal control of perfect plasticity, part Ⅱ: Displacement tracking, preprint, 2020, arXiv: 2003.09619. |
[17] |
A. Mielke and T. Roubíček, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193. Springer, New York, 2015.
doi: 10.1007/978-1-4939-2706-7. |
[18] |
N. Ottosen and M. Ristinmaa, The Mechanics of Constitutive Modeling, Elsevier, Amsterdam, 2005. |
[19] |
J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Interdisciplinary Applied Mathematics, 7. Springer-Verlag, New York, 1998. |
[20] |
U. Stefanelli, D. Wachsmuth and G. Wachsmuth,
Optimal control of a rate-independent evolution equation via viscous regularization, Discrete and Continuous Dynamical Systems. Series S, 10 (2017), 1467-1485.
doi: 10.3934/dcdss.2017076. |
[21] |
P.-M. Suquet, Sur les équations de la plasticité: Existence et régularité des solutions, Journal de Mécanique, 20 (1981), 3–39. |
[22] |
R. Temam, Mathematical Problems in Plasticity, Courier Dover Publications, 2018. |
[23] |
G. Wachsmuth, Optimal Control of Quasistatic Plasticity, PhD thesis, TU Chemnitz, 2011. |
[24] |
G. Wachsmuth, Optimal control of quasi-static plasticity with linear kinematic hardening, Part Ⅰ: Existence and discretization in time, SIAM Journal on Control and Optimization, 50 (2012), 2836–2861 + loose erratum.
doi: 10.1137/110839187. |
[25] |
G. Wachsmuth,
Optimal control of quasistatic plasticity with linear kinematic hardening Ⅱ: Regularization and differentiability, Z. Anal. Anwend., 34 (2015), 391-418.
doi: 10.4171/ZAA/1546. |
[26] |
G. Wachsmuth,
Optimal control of quasistatic plasticity with linear kinematic hardening Ⅲ: Optimality conditions, Z. Anal. Anwend., 35 (2016), 81-118.
doi: 10.4171/ZAA/1556. |
[27] |
S. Walther, C. Meyer and H. Meinlschmidt, Optimal control of an abstract evolution variational inequality with application to homogenized plasticity, Journal of Nonsmooth Analysis and Optimization, 1. |
show all references
References:
[1] |
S. Bartels, A. Mielke and T. Roubíček,
Quasi-static small-strain plasticity in the limit of vanishing hardening and its numerical approximation, SIAM Journal on Numerical Analysis, 50 (2012), 951-976.
doi: 10.1137/100819205. |
[2] |
H. Brézis, Opérateurs Maximaux Monotones, North-Holland, Amsterdam, 1973. |
[3] |
E. Casas and J.-P. Raymond,
Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations, SIAM Journal on Control and Optimization, 45 (2006), 1586-1611.
doi: 10.1137/050626600. |
[4] |
S. Chowdhury, T. Gudi and A. K. Nandakumaran,
Error bounds for a Dirichlet boundary control problem based on energy spaces, Mathematics of Computation, 86 (2017), 1103-1126.
doi: 10.1090/mcom/3125. |
[5] |
G. Dal Maso, A. DeSimone and M. G. Mora,
Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Archive for Rational Mechanics and Analysis, 180 (2006), 237-291.
doi: 10.1007/s00205-005-0407-0. |
[6] |
K. Gröger,
A $W^{1, p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann., 283 (1989), 679-687.
doi: 10.1007/BF01442860. |
[7] |
T. Gudi and R. Ch. Sau, Finite element analysis of the constrained Dirichlet boundary control problem governed by the diffusion problem, ESAIM: Control, Optimisation and Calculus of Variations, 26 (2020), Paper No. 78, 19 pp.
doi: 10.1051/cocv/2019068. |
[8] |
W. Han and B. D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, Second edition, Interdisciplinary Applied Mathematics, 9. Springer, New York, 2013.
doi: 10.1007/978-1-4614-5940-8. |
[9] |
R. Herzog and C. Meyer,
Optimal control of static plasticity with linear kinematic hardening, ZAMM Z. Angew. Math. Mech., 91 (2011), 777-794.
doi: 10.1002/zamm.200900378. |
[10] |
R. Herzog, C. Meyer and G. Wachsmuth,
B- and strong stationarity for optimal control of static plasticity with hardening, SIAM Journal on Optimization, 23 (2013), 321-352.
doi: 10.1137/110821147. |
[11] |
R. Herzog, C. Meyer and G. Wachsmuth,
Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions, Journal of Mathematical Analysis and Applications, 382 (2011), 802-813.
doi: 10.1016/j.jmaa.2011.04.074. |
[12] |
R. Herzog, C. Meyer and G. Wachsmuth,
C-stationarity for optimal control of static plasticity with linear kinematic hardening, SIAM Journal on Control and Optimization, 50 (2012), 3052-3082.
doi: 10.1137/100809325. |
[13] |
C. Johnson,
Existence theorems for plasticity problems, J. Math. Pures Appl., 55 (1976), 431-444.
|
[14] |
A. Maury, G. Allaire and F. Jouve,
Elasto-plastic shape optimization using the level set method, SIAM Journal on Control and Optimization, 56 (2018), 556-581.
doi: 10.1137/17M1128940. |
[15] |
S. May, R. Rannacher and B. Vexler,
Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems, SIAM Journal on Control and Optimization, 51 (2013), 2585-2611.
doi: 10.1137/080735734. |
[16] |
C. Meyer and S. Walther, Optimal control of perfect plasticity, part Ⅱ: Displacement tracking, preprint, 2020, arXiv: 2003.09619. |
[17] |
A. Mielke and T. Roubíček, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193. Springer, New York, 2015.
doi: 10.1007/978-1-4939-2706-7. |
[18] |
N. Ottosen and M. Ristinmaa, The Mechanics of Constitutive Modeling, Elsevier, Amsterdam, 2005. |
[19] |
J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Interdisciplinary Applied Mathematics, 7. Springer-Verlag, New York, 1998. |
[20] |
U. Stefanelli, D. Wachsmuth and G. Wachsmuth,
Optimal control of a rate-independent evolution equation via viscous regularization, Discrete and Continuous Dynamical Systems. Series S, 10 (2017), 1467-1485.
doi: 10.3934/dcdss.2017076. |
[21] |
P.-M. Suquet, Sur les équations de la plasticité: Existence et régularité des solutions, Journal de Mécanique, 20 (1981), 3–39. |
[22] |
R. Temam, Mathematical Problems in Plasticity, Courier Dover Publications, 2018. |
[23] |
G. Wachsmuth, Optimal Control of Quasistatic Plasticity, PhD thesis, TU Chemnitz, 2011. |
[24] |
G. Wachsmuth, Optimal control of quasi-static plasticity with linear kinematic hardening, Part Ⅰ: Existence and discretization in time, SIAM Journal on Control and Optimization, 50 (2012), 2836–2861 + loose erratum.
doi: 10.1137/110839187. |
[25] |
G. Wachsmuth,
Optimal control of quasistatic plasticity with linear kinematic hardening Ⅱ: Regularization and differentiability, Z. Anal. Anwend., 34 (2015), 391-418.
doi: 10.4171/ZAA/1546. |
[26] |
G. Wachsmuth,
Optimal control of quasistatic plasticity with linear kinematic hardening Ⅲ: Optimality conditions, Z. Anal. Anwend., 35 (2016), 81-118.
doi: 10.4171/ZAA/1556. |
[27] |
S. Walther, C. Meyer and H. Meinlschmidt, Optimal control of an abstract evolution variational inequality with application to homogenized plasticity, Journal of Nonsmooth Analysis and Optimization, 1. |


iteration | err | ||||
0.001 | 100 | -4.7174e-07 | -4.8520e-07 | 0.027751 | 0.00048 |
0.01 | 25 | -2.0089e-07 | -2.0869e-07 | 0.037369 | 0.00192 |
0.1 | 33 | -2.4687e-07 | -2.5552e-07 | 0.033854 | 0.01781 |
1 | 58 | -2.1643e-07 | -2.1790e-07 | 0.006773 | 0.13652 |
10 | 100 | -2.0106e-06 | -2.0122e-06 | 0.000833 | 0.62584 |
100 | 62 | -2.4884e-07 | -2.4876e-07 | 0.000338 | 5.31148 |
iteration | err | ||||
0.001 | 100 | -4.7174e-07 | -4.8520e-07 | 0.027751 | 0.00048 |
0.01 | 25 | -2.0089e-07 | -2.0869e-07 | 0.037369 | 0.00192 |
0.1 | 33 | -2.4687e-07 | -2.5552e-07 | 0.033854 | 0.01781 |
1 | 58 | -2.1643e-07 | -2.1790e-07 | 0.006773 | 0.13652 |
10 | 100 | -2.0106e-06 | -2.0122e-06 | 0.000833 | 0.62584 |
100 | 62 | -2.4884e-07 | -2.4876e-07 | 0.000338 | 5.31148 |
iteration | err | ||||
8 | 51 | -2.3590e-07 | -2.8903e-07 | 0.183828 | 0.0478 |
32 | 45 | -2.4318e-07 | -2.5225e-07 | 0.035941 | 0.1066 |
128 | 58 | -2.1643e-07 | -2.1790e-07 | 0.006773 | 0.1365 |
512 | 48 | -2.2542e-07 | -2.2541e-07 | 0.000045 | 0.1318 |
2048 | 41 | -2.3150e-07 | -2.3165e-07 | 0.000662 | 0.1339 |
iteration | err | ||||
8 | 51 | -2.3590e-07 | -2.8903e-07 | 0.183828 | 0.0478 |
32 | 45 | -2.4318e-07 | -2.5225e-07 | 0.035941 | 0.1066 |
128 | 58 | -2.1643e-07 | -2.1790e-07 | 0.006773 | 0.1365 |
512 | 48 | -2.2542e-07 | -2.2541e-07 | 0.000045 | 0.1318 |
2048 | 41 | -2.3150e-07 | -2.3165e-07 | 0.000662 | 0.1339 |
[1] |
Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076 |
[2] |
Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027 |
[3] |
Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559 |
[4] |
Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331 |
[5] |
Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial and Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47 |
[6] |
Jianxiong Ye, An Li. Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1399-1419. doi: 10.3934/jimo.2018101 |
[7] |
Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014 |
[8] |
M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070 |
[9] |
T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rate-independent processes by entropic regularization. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 215-233. doi: 10.3934/dcdss.2013.6.215 |
[10] |
Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445 |
[11] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control and Related Fields, 2021, 11 (4) : 739-769. doi: 10.3934/mcrf.2020045 |
[12] |
Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022 |
[13] |
Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281 |
[14] |
Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control and Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001 |
[15] |
Monika Dryl, Delfim F. M. Torres. Necessary optimality conditions for infinite horizon variational problems on time scales. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 145-160. doi: 10.3934/naco.2013.3.145 |
[16] |
Lihua Li, Yan Gao, Hongjie Wang. Second order sufficient optimality conditions for hybrid control problems with state jump. Journal of Industrial and Management Optimization, 2015, 11 (1) : 329-343. doi: 10.3934/jimo.2015.11.329 |
[17] |
Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101 |
[18] |
Adolfo Damiano Cafaro, Simone Fiori. Optimization of a control law to synchronize first-order dynamical systems on Riemannian manifolds by a transverse component. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021213 |
[19] |
Francis Clarke. A general theorem on necessary conditions in optimal control. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 485-503. doi: 10.3934/dcds.2011.29.485 |
[20] |
Y. Gong, X. Xiang. A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales. Journal of Industrial and Management Optimization, 2009, 5 (1) : 1-10. doi: 10.3934/jimo.2009.5.1 |
2020 Impact Factor: 1.284
Tools
Metrics
Other articles
by authors
[Back to Top]