doi: 10.3934/mcrf.2021023
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Solvable approximations of 3-dimensional almost-Riemannian structures

1. 

Lab. R. Salem, CNRS UMR 6085, Université de Rouen, avenue de l'université BP 12, 76801 Saint Étienne-du-Rouvray, France

2. 

Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190 Gif-sur-Yvette, France

* Corresponding author: philippe.jouan@univ-rouen.fr

Received  October 2020 Early access March 2021

In some cases, the nilpotent approximation of an almost-Riemannian structure can degenerate into a constant rank sub-Riemannian one. In those cases, the nilpotent approximation can be replaced by a solvable one that turns out to be a linear ARS on a nilpotent Lie group or a homogeneous space.

The distance defined by the solvable approximation is analyzed in the 3D-generic cases. It is shown that it is a better approximation of the original distance than the nilpotent one.

Citation: Philippe Jouan, Ronald Manríquez. Solvable approximations of 3-dimensional almost-Riemannian structures. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021023
References:
[1]

R. Abraham, J. E. Marsden and T. Ratoiu, Manifolds, Tensor Analysis, and Applications, Second edition, Applied Mathematical Sciences, 75. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[2]

A. A. AgrachevU. BoscainG. CharlotR. Ghezzi and M. Sigalotti, Two-dimensional almost-Riemannian structures with tangency points, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 793-807.  doi: 10.1016/j.anihpc.2009.11.011.  Google Scholar

[3]

A. AgrachevU. Boscain and M. Sigalotti, A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds, Discrete and Continuous Dynamical Systems, 20 (2008), 801-822.  doi: 10.3934/dcds.2008.20.801.  Google Scholar

[4]

A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Studies in Advanced Mathematics, 181. Cambridge University Press, Cambridge, 2020.  Google Scholar

[5]

V. Ayala and P. Jouan, Almost-Riemannian geometry on Lie groups, SIAM Journal on Control and Optimization, 54 (2016), 2919-2947.  doi: 10.1137/15M1038372.  Google Scholar

[6]

V. Ayala and J. Tirao, Linear control systems on Lie groups and controllability, Proceedings of Symposia in Pure Mathematics, 64 (1999), 47-64.  doi: 10.1090/pspum/064/1654529.  Google Scholar

[7]

A. Bellaïche, The Tangent space in sub-Riemannian geometry, Sub-Riemannian geometry, Progr. Math., Birkhäuser, Basel, 144 (1996), 1-78.  doi: 10.1007/978-3-0348-9210-0_1.  Google Scholar

[8]

B. BonnardJ.-B. CaillauR. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1081-1098.  doi: 10.1016/j.anihpc.2008.03.010.  Google Scholar

[9]

B. BonnardG. CharlotR. Ghezzi and G. Janin, The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry, Journal of Dynamical and Control Systems, 17 (2011), 141-161.  doi: 10.1007/s10883-011-9113-4.  Google Scholar

[10]

U. BoscainG. CharlotM. Gaye and P. Mason, Local properties of almost-Riemannian structures in dimension 3, Discrete Contin. Dyn. Syst., 35 (2015), 4115-4147.  doi: 10.3934/dcds.2015.35.4115.  Google Scholar

[11]

U. BoscainG. Charlot and R. Ghezzi, Normal forms and invariants for 2-dimensional almost-Riemannian structures, Differential Geometry and its Applications, 31 (2013), 41-62.  doi: 10.1016/j.difgeo.2012.10.001.  Google Scholar

[12]

U. BoscainG. CharlotR. Ghezzi and M. Sigalotti, Lipschitz classification of almost-Riemannian distances on compact oriented surfaces, Journal of Geometric Analysis, 23 (2013), 438-455.  doi: 10.1007/s12220-011-9262-4.  Google Scholar

[13]

N. Bourbaki, Eléments De Mathematique. Groupes et Algèbres de Lie: Chapitres 2 et 3, 2nd edition, Germany: Springer Verlag, 2007. Google Scholar

[14]

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin-G?ttingen-Heidelberg, 1954.  Google Scholar

[15]

A. Elías-Zúñiga, A general solution of the Duffing equation, Nonlinear Dynamics, 45 (2006), 227-235.  doi: 10.1007/s11071-006-1858-z.  Google Scholar

[16]

F. Jean, Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning, SpringerBriefs in Mathematics, Springer International Publishing, 2014. doi: 10.1007/978-3-319-08690-3.  Google Scholar

[17]

P. Jouan, Equivalence of control systems with linear systems on Lie groups and homogeneous spaces, ESAIM: Control, Optimisation and Calculus of Variations, 16 (2010), 956-973.  doi: 10.1051/cocv/2009027.  Google Scholar

[18]

P. JouanG. Zsigmond and V. Ayala, Isometries of almost-Riemannian structures on Lie groups, Differential Geometry and its Applications, 61 (2018), 59-81.  doi: 10.1016/j.difgeo.2018.08.003.  Google Scholar

show all references

References:
[1]

R. Abraham, J. E. Marsden and T. Ratoiu, Manifolds, Tensor Analysis, and Applications, Second edition, Applied Mathematical Sciences, 75. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[2]

A. A. AgrachevU. BoscainG. CharlotR. Ghezzi and M. Sigalotti, Two-dimensional almost-Riemannian structures with tangency points, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 793-807.  doi: 10.1016/j.anihpc.2009.11.011.  Google Scholar

[3]

A. AgrachevU. Boscain and M. Sigalotti, A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds, Discrete and Continuous Dynamical Systems, 20 (2008), 801-822.  doi: 10.3934/dcds.2008.20.801.  Google Scholar

[4]

A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Studies in Advanced Mathematics, 181. Cambridge University Press, Cambridge, 2020.  Google Scholar

[5]

V. Ayala and P. Jouan, Almost-Riemannian geometry on Lie groups, SIAM Journal on Control and Optimization, 54 (2016), 2919-2947.  doi: 10.1137/15M1038372.  Google Scholar

[6]

V. Ayala and J. Tirao, Linear control systems on Lie groups and controllability, Proceedings of Symposia in Pure Mathematics, 64 (1999), 47-64.  doi: 10.1090/pspum/064/1654529.  Google Scholar

[7]

A. Bellaïche, The Tangent space in sub-Riemannian geometry, Sub-Riemannian geometry, Progr. Math., Birkhäuser, Basel, 144 (1996), 1-78.  doi: 10.1007/978-3-0348-9210-0_1.  Google Scholar

[8]

B. BonnardJ.-B. CaillauR. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1081-1098.  doi: 10.1016/j.anihpc.2008.03.010.  Google Scholar

[9]

B. BonnardG. CharlotR. Ghezzi and G. Janin, The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry, Journal of Dynamical and Control Systems, 17 (2011), 141-161.  doi: 10.1007/s10883-011-9113-4.  Google Scholar

[10]

U. BoscainG. CharlotM. Gaye and P. Mason, Local properties of almost-Riemannian structures in dimension 3, Discrete Contin. Dyn. Syst., 35 (2015), 4115-4147.  doi: 10.3934/dcds.2015.35.4115.  Google Scholar

[11]

U. BoscainG. Charlot and R. Ghezzi, Normal forms and invariants for 2-dimensional almost-Riemannian structures, Differential Geometry and its Applications, 31 (2013), 41-62.  doi: 10.1016/j.difgeo.2012.10.001.  Google Scholar

[12]

U. BoscainG. CharlotR. Ghezzi and M. Sigalotti, Lipschitz classification of almost-Riemannian distances on compact oriented surfaces, Journal of Geometric Analysis, 23 (2013), 438-455.  doi: 10.1007/s12220-011-9262-4.  Google Scholar

[13]

N. Bourbaki, Eléments De Mathematique. Groupes et Algèbres de Lie: Chapitres 2 et 3, 2nd edition, Germany: Springer Verlag, 2007. Google Scholar

[14]

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin-G?ttingen-Heidelberg, 1954.  Google Scholar

[15]

A. Elías-Zúñiga, A general solution of the Duffing equation, Nonlinear Dynamics, 45 (2006), 227-235.  doi: 10.1007/s11071-006-1858-z.  Google Scholar

[16]

F. Jean, Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning, SpringerBriefs in Mathematics, Springer International Publishing, 2014. doi: 10.1007/978-3-319-08690-3.  Google Scholar

[17]

P. Jouan, Equivalence of control systems with linear systems on Lie groups and homogeneous spaces, ESAIM: Control, Optimisation and Calculus of Variations, 16 (2010), 956-973.  doi: 10.1051/cocv/2009027.  Google Scholar

[18]

P. JouanG. Zsigmond and V. Ayala, Isometries of almost-Riemannian structures on Lie groups, Differential Geometry and its Applications, 61 (2018), 59-81.  doi: 10.1016/j.difgeo.2018.08.003.  Google Scholar

Figure 1.  Geodesics for $ \theta\in\left\{0,\frac{\pi}{3},\frac{2\pi}{3},\pi,\frac{4\pi}{6},\frac{5\pi}{6}\right\} $ when $ r = 0 $
Figure 2.  Ball in 3-D generic case
[1]

Ugo Boscain, Gregoire Charlot, Moussa Gaye, Paolo Mason. Local properties of almost-Riemannian structures in dimension 3. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4115-4147. doi: 10.3934/dcds.2015.35.4115

[2]

Andrei Agrachev, Ugo Boscain, Mario Sigalotti. A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 801-822. doi: 10.3934/dcds.2008.20.801

[3]

Erlend Grong, Alexander Vasil’ev. Sub-Riemannian and sub-Lorentzian geometry on $SU(1,1)$ and on its universal cover. Journal of Geometric Mechanics, 2011, 3 (2) : 225-260. doi: 10.3934/jgm.2011.3.225

[4]

Daniel Genin, Serge Tabachnikov. On configuration spaces of plane polygons, sub-Riemannian geometry and periodic orbits of outer billiards. Journal of Modern Dynamics, 2007, 1 (2) : 155-173. doi: 10.3934/jmd.2007.1.155

[5]

Yunlong Huang, P. S. Krishnaprasad. Sub-Riemannian geometry and finite time thermodynamics Part 1: The stochastic oscillator. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1243-1268. doi: 10.3934/dcdss.2020072

[6]

Stefan Sommer, Anne Marie Svane. Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 391-410. doi: 10.3934/jgm.2017015

[7]

Percy Fernández-Sánchez, Jorge Mozo-Fernández, Hernán Neciosup. Dicritical nilpotent holomorphic foliations. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 3223-3237. doi: 10.3934/dcds.2018140

[8]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

[9]

Doston Jumaniyozov, Ivan Kaygorodov, Abror Khudoyberdiyev. The algebraic classification of nilpotent commutative algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021068

[10]

Isaac A. García, Douglas S. Shafer. Cyclicity of a class of polynomial nilpotent center singularities. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2497-2520. doi: 10.3934/dcds.2016.36.2497

[11]

Mark Pollicott. Ergodicity of stable manifolds for nilpotent extensions of Anosov flows. Discrete & Continuous Dynamical Systems, 2002, 8 (3) : 599-604. doi: 10.3934/dcds.2002.8.599

[12]

Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021, 41 (10) : 4667-4704. doi: 10.3934/dcds.2021053

[13]

Alex L Castro, Wyatt Howard, Corey Shanbrom. Bridges between subriemannian geometry and algebraic geometry: Now and then. Conference Publications, 2015, 2015 (special) : 239-247. doi: 10.3934/proc.2015.0239

[14]

Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407

[15]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[16]

Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291

[17]

Katarzyna Grabowska, Paweƚ Urbański. Geometry of Routh reduction. Journal of Geometric Mechanics, 2019, 11 (1) : 23-44. doi: 10.3934/jgm.2019002

[18]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[19]

Jean-Marc Couveignes, Reynald Lercier. The geometry of some parameterizations and encodings. Advances in Mathematics of Communications, 2014, 8 (4) : 437-458. doi: 10.3934/amc.2014.8.437

[20]

Yong Lin, Gábor Lippner, Dan Mangoubi, Shing-Tung Yau. Nodal geometry of graphs on surfaces. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1291-1298. doi: 10.3934/dcds.2010.28.1291

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (140)
  • HTML views (256)
  • Cited by (0)

Other articles
by authors

[Back to Top]