In some cases, the nilpotent approximation of an almost-Riemannian structure can degenerate into a constant rank sub-Riemannian one. In those cases, the nilpotent approximation can be replaced by a solvable one that turns out to be a linear ARS on a nilpotent Lie group or a homogeneous space.
The distance defined by the solvable approximation is analyzed in the 3D-generic cases. It is shown that it is a better approximation of the original distance than the nilpotent one.
Citation: |
[1] |
R. Abraham, J. E. Marsden and T. Ratoiu, Manifolds, Tensor Analysis, and Applications, Second edition, Applied Mathematical Sciences, 75. Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4612-1029-0.![]() ![]() ![]() |
[2] |
A. A. Agrachev, U. Boscain, G. Charlot, R. Ghezzi and M. Sigalotti, Two-dimensional almost-Riemannian structures with tangency points, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 793-807.
doi: 10.1016/j.anihpc.2009.11.011.![]() ![]() ![]() |
[3] |
A. Agrachev, U. Boscain and M. Sigalotti, A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds, Discrete and Continuous Dynamical Systems, 20 (2008), 801-822.
doi: 10.3934/dcds.2008.20.801.![]() ![]() ![]() |
[4] |
A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Studies in Advanced Mathematics, 181. Cambridge University Press, Cambridge, 2020.
![]() ![]() |
[5] |
V. Ayala and P. Jouan, Almost-Riemannian geometry on Lie groups, SIAM Journal on Control and Optimization, 54 (2016), 2919-2947.
doi: 10.1137/15M1038372.![]() ![]() ![]() |
[6] |
V. Ayala and J. Tirao, Linear control systems on Lie groups and controllability, Proceedings of Symposia in Pure Mathematics, 64 (1999), 47-64.
doi: 10.1090/pspum/064/1654529.![]() ![]() ![]() |
[7] |
A. Bellaïche, The Tangent space in sub-Riemannian geometry, Sub-Riemannian geometry, Progr. Math., Birkhäuser, Basel, 144 (1996), 1-78.
doi: 10.1007/978-3-0348-9210-0_1.![]() ![]() ![]() |
[8] |
B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1081-1098.
doi: 10.1016/j.anihpc.2008.03.010.![]() ![]() ![]() |
[9] |
B. Bonnard, G. Charlot, R. Ghezzi and G. Janin, The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry, Journal of Dynamical and Control Systems, 17 (2011), 141-161.
doi: 10.1007/s10883-011-9113-4.![]() ![]() ![]() |
[10] |
U. Boscain, G. Charlot, M. Gaye and P. Mason, Local properties of almost-Riemannian structures in dimension 3, Discrete Contin. Dyn. Syst., 35 (2015), 4115-4147.
doi: 10.3934/dcds.2015.35.4115.![]() ![]() ![]() |
[11] |
U. Boscain, G. Charlot and R. Ghezzi, Normal forms and invariants for 2-dimensional almost-Riemannian structures, Differential Geometry and its Applications, 31 (2013), 41-62.
doi: 10.1016/j.difgeo.2012.10.001.![]() ![]() ![]() |
[12] |
U. Boscain, G. Charlot, R. Ghezzi and M. Sigalotti, Lipschitz classification of almost-Riemannian distances on compact oriented surfaces, Journal of Geometric Analysis, 23 (2013), 438-455.
doi: 10.1007/s12220-011-9262-4.![]() ![]() ![]() |
[13] |
N. Bourbaki, Eléments De Mathematique. Groupes et Algèbres de Lie: Chapitres 2 et 3, 2nd edition, Germany: Springer Verlag, 2007.
![]() |
[14] |
P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin-G?ttingen-Heidelberg, 1954.
![]() ![]() |
[15] |
A. Elías-Zúñiga, A general solution of the Duffing equation, Nonlinear Dynamics, 45 (2006), 227-235.
doi: 10.1007/s11071-006-1858-z.![]() ![]() ![]() |
[16] |
F. Jean, Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning, SpringerBriefs in Mathematics, Springer International Publishing, 2014.
doi: 10.1007/978-3-319-08690-3.![]() ![]() ![]() |
[17] |
P. Jouan, Equivalence of control systems with linear systems on Lie groups and homogeneous spaces, ESAIM: Control, Optimisation and Calculus of Variations, 16 (2010), 956-973.
doi: 10.1051/cocv/2009027.![]() ![]() ![]() |
[18] |
P. Jouan, G. Zsigmond and V. Ayala, Isometries of almost-Riemannian structures on Lie groups, Differential Geometry and its Applications, 61 (2018), 59-81.
doi: 10.1016/j.difgeo.2018.08.003.![]() ![]() ![]() |
Geodesics for
Ball in 3-D generic case