doi: 10.3934/mcrf.2021023

Solvable approximations of 3-dimensional almost-Riemannian structures

1. 

Lab. R. Salem, CNRS UMR 6085, Université de Rouen, avenue de l'université BP 12, 76801 Saint Étienne-du-Rouvray, France

2. 

Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190 Gif-sur-Yvette, France

* Corresponding author: philippe.jouan@univ-rouen.fr

Received  October 2020 Published  March 2021

In some cases, the nilpotent approximation of an almost-Riemannian structure can degenerate into a constant rank sub-Riemannian one. In those cases, the nilpotent approximation can be replaced by a solvable one that turns out to be a linear ARS on a nilpotent Lie group or a homogeneous space.

The distance defined by the solvable approximation is analyzed in the 3D-generic cases. It is shown that it is a better approximation of the original distance than the nilpotent one.

Citation: Philippe Jouan, Ronald Manríquez. Solvable approximations of 3-dimensional almost-Riemannian structures. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021023
References:
[1]

R. Abraham, J. E. Marsden and T. Ratoiu, Manifolds, Tensor Analysis, and Applications, Second edition, Applied Mathematical Sciences, 75. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[2]

A. A. AgrachevU. BoscainG. CharlotR. Ghezzi and M. Sigalotti, Two-dimensional almost-Riemannian structures with tangency points, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 793-807.  doi: 10.1016/j.anihpc.2009.11.011.  Google Scholar

[3]

A. AgrachevU. Boscain and M. Sigalotti, A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds, Discrete and Continuous Dynamical Systems, 20 (2008), 801-822.  doi: 10.3934/dcds.2008.20.801.  Google Scholar

[4]

A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Studies in Advanced Mathematics, 181. Cambridge University Press, Cambridge, 2020.  Google Scholar

[5]

V. Ayala and P. Jouan, Almost-Riemannian geometry on Lie groups, SIAM Journal on Control and Optimization, 54 (2016), 2919-2947.  doi: 10.1137/15M1038372.  Google Scholar

[6]

V. Ayala and J. Tirao, Linear control systems on Lie groups and controllability, Proceedings of Symposia in Pure Mathematics, 64 (1999), 47-64.  doi: 10.1090/pspum/064/1654529.  Google Scholar

[7]

A. Bellaïche, The Tangent space in sub-Riemannian geometry, Sub-Riemannian geometry, Progr. Math., Birkhäuser, Basel, 144 (1996), 1-78.  doi: 10.1007/978-3-0348-9210-0_1.  Google Scholar

[8]

B. BonnardJ.-B. CaillauR. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1081-1098.  doi: 10.1016/j.anihpc.2008.03.010.  Google Scholar

[9]

B. BonnardG. CharlotR. Ghezzi and G. Janin, The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry, Journal of Dynamical and Control Systems, 17 (2011), 141-161.  doi: 10.1007/s10883-011-9113-4.  Google Scholar

[10]

U. BoscainG. CharlotM. Gaye and P. Mason, Local properties of almost-Riemannian structures in dimension 3, Discrete Contin. Dyn. Syst., 35 (2015), 4115-4147.  doi: 10.3934/dcds.2015.35.4115.  Google Scholar

[11]

U. BoscainG. Charlot and R. Ghezzi, Normal forms and invariants for 2-dimensional almost-Riemannian structures, Differential Geometry and its Applications, 31 (2013), 41-62.  doi: 10.1016/j.difgeo.2012.10.001.  Google Scholar

[12]

U. BoscainG. CharlotR. Ghezzi and M. Sigalotti, Lipschitz classification of almost-Riemannian distances on compact oriented surfaces, Journal of Geometric Analysis, 23 (2013), 438-455.  doi: 10.1007/s12220-011-9262-4.  Google Scholar

[13]

N. Bourbaki, Eléments De Mathematique. Groupes et Algèbres de Lie: Chapitres 2 et 3, 2nd edition, Germany: Springer Verlag, 2007. Google Scholar

[14]

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin-G?ttingen-Heidelberg, 1954.  Google Scholar

[15]

A. Elías-Zúñiga, A general solution of the Duffing equation, Nonlinear Dynamics, 45 (2006), 227-235.  doi: 10.1007/s11071-006-1858-z.  Google Scholar

[16]

F. Jean, Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning, SpringerBriefs in Mathematics, Springer International Publishing, 2014. doi: 10.1007/978-3-319-08690-3.  Google Scholar

[17]

P. Jouan, Equivalence of control systems with linear systems on Lie groups and homogeneous spaces, ESAIM: Control, Optimisation and Calculus of Variations, 16 (2010), 956-973.  doi: 10.1051/cocv/2009027.  Google Scholar

[18]

P. JouanG. Zsigmond and V. Ayala, Isometries of almost-Riemannian structures on Lie groups, Differential Geometry and its Applications, 61 (2018), 59-81.  doi: 10.1016/j.difgeo.2018.08.003.  Google Scholar

show all references

References:
[1]

R. Abraham, J. E. Marsden and T. Ratoiu, Manifolds, Tensor Analysis, and Applications, Second edition, Applied Mathematical Sciences, 75. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[2]

A. A. AgrachevU. BoscainG. CharlotR. Ghezzi and M. Sigalotti, Two-dimensional almost-Riemannian structures with tangency points, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 793-807.  doi: 10.1016/j.anihpc.2009.11.011.  Google Scholar

[3]

A. AgrachevU. Boscain and M. Sigalotti, A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds, Discrete and Continuous Dynamical Systems, 20 (2008), 801-822.  doi: 10.3934/dcds.2008.20.801.  Google Scholar

[4]

A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Studies in Advanced Mathematics, 181. Cambridge University Press, Cambridge, 2020.  Google Scholar

[5]

V. Ayala and P. Jouan, Almost-Riemannian geometry on Lie groups, SIAM Journal on Control and Optimization, 54 (2016), 2919-2947.  doi: 10.1137/15M1038372.  Google Scholar

[6]

V. Ayala and J. Tirao, Linear control systems on Lie groups and controllability, Proceedings of Symposia in Pure Mathematics, 64 (1999), 47-64.  doi: 10.1090/pspum/064/1654529.  Google Scholar

[7]

A. Bellaïche, The Tangent space in sub-Riemannian geometry, Sub-Riemannian geometry, Progr. Math., Birkhäuser, Basel, 144 (1996), 1-78.  doi: 10.1007/978-3-0348-9210-0_1.  Google Scholar

[8]

B. BonnardJ.-B. CaillauR. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1081-1098.  doi: 10.1016/j.anihpc.2008.03.010.  Google Scholar

[9]

B. BonnardG. CharlotR. Ghezzi and G. Janin, The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry, Journal of Dynamical and Control Systems, 17 (2011), 141-161.  doi: 10.1007/s10883-011-9113-4.  Google Scholar

[10]

U. BoscainG. CharlotM. Gaye and P. Mason, Local properties of almost-Riemannian structures in dimension 3, Discrete Contin. Dyn. Syst., 35 (2015), 4115-4147.  doi: 10.3934/dcds.2015.35.4115.  Google Scholar

[11]

U. BoscainG. Charlot and R. Ghezzi, Normal forms and invariants for 2-dimensional almost-Riemannian structures, Differential Geometry and its Applications, 31 (2013), 41-62.  doi: 10.1016/j.difgeo.2012.10.001.  Google Scholar

[12]

U. BoscainG. CharlotR. Ghezzi and M. Sigalotti, Lipschitz classification of almost-Riemannian distances on compact oriented surfaces, Journal of Geometric Analysis, 23 (2013), 438-455.  doi: 10.1007/s12220-011-9262-4.  Google Scholar

[13]

N. Bourbaki, Eléments De Mathematique. Groupes et Algèbres de Lie: Chapitres 2 et 3, 2nd edition, Germany: Springer Verlag, 2007. Google Scholar

[14]

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin-G?ttingen-Heidelberg, 1954.  Google Scholar

[15]

A. Elías-Zúñiga, A general solution of the Duffing equation, Nonlinear Dynamics, 45 (2006), 227-235.  doi: 10.1007/s11071-006-1858-z.  Google Scholar

[16]

F. Jean, Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning, SpringerBriefs in Mathematics, Springer International Publishing, 2014. doi: 10.1007/978-3-319-08690-3.  Google Scholar

[17]

P. Jouan, Equivalence of control systems with linear systems on Lie groups and homogeneous spaces, ESAIM: Control, Optimisation and Calculus of Variations, 16 (2010), 956-973.  doi: 10.1051/cocv/2009027.  Google Scholar

[18]

P. JouanG. Zsigmond and V. Ayala, Isometries of almost-Riemannian structures on Lie groups, Differential Geometry and its Applications, 61 (2018), 59-81.  doi: 10.1016/j.difgeo.2018.08.003.  Google Scholar

Figure 1.  Geodesics for $ \theta\in\left\{0,\frac{\pi}{3},\frac{2\pi}{3},\pi,\frac{4\pi}{6},\frac{5\pi}{6}\right\} $ when $ r = 0 $
Figure 2.  Ball in 3-D generic case
[1]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[2]

Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021053

[3]

Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225

[4]

Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268

[5]

Simone Fiori, Italo Cervigni, Mattia Ippoliti, Claudio Menotta. Synthetic nonlinear second-order oscillators on Riemannian manifolds and their numerical simulation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021088

[6]

Hyunjin Ahn, Seung-Yeal Ha, Woojoo Shim. Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds. Kinetic & Related Models, 2021, 14 (2) : 323-351. doi: 10.3934/krm.2021007

[7]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389

[8]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[9]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[10]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[11]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[12]

Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021051

[13]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021059

[14]

Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021069

[15]

Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220

[16]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[17]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

[18]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[19]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002

[20]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

2019 Impact Factor: 0.857

Article outline

Figures and Tables

[Back to Top]