• Previous Article
    Stochastic maximum principle for problems with delay with dependence on the past through general measures
  • MCRF Home
  • This Issue
  • Next Article
    A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide
doi: 10.3934/mcrf.2021024

Controllability under positive constraints for quasilinear parabolic PDEs

DeustoTech, Fundación Deusto, Av. Universidades, 24, 48007, Bilbao, Basque Country, Spain, Instituto de Matemática e Estatística, Universidade Federal Fluminense, R. Prof. Marcos Waldemar de Freitas, s/n, 24210-201, Niterói, RJ, Brazil

* Corresponding author: Miguel R. Nuñez-Chávez

Received  October 2019 Revised  March 2021 Published  April 2021

This paper deals with the analysis of the internal controllability with constraint of positive kind of a quasilinear parabolic PDE. We prove two results about this PDE: First, we prove a global steady state constrained controllability result. For this purpose, we employ the called "stair-case method". And second, we prove a global trajectory constrained controllability result. For this purpose, we employ the well-known "stabilization property" in $ L^2 $ norms. Furthermore, for both results an important argument is needed: the exact local controllability to trajectories. Then we prove the positivity of the minimal controllability time using arguments of comparison principle. Some additional comments and open problems concerning other systems are presented.

Citation: Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021024
References:
[1]

V. M. Alekseev, V. M. Tikhomorov and S. V. Formin, Optimal Control, Consultants Bureau, New York, 1987. doi: 10.1007/978-1-4615-7551-1.  Google Scholar

[2]

M. Beceanu, Local exact controllability of the diffusion equation in one dimension, Abstr. Appl. Anal., 2003 (2003), 793-811.  doi: 10.1155/S1085337503303033.  Google Scholar

[3]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer New York, 2010. Available from: https://books.google.es/books?id=GAA2XqOIIGoC.  Google Scholar

[4]

R. Du, Null controllability for a class of degenerate parabolic equations with the gradient terms, J. Evol. Equ., 19 (2019), 585-613.  doi: 10.1007/s00028-019-00487-8.  Google Scholar

[5]

O. Yu. Émanuvilov, Controllability of parabolic equations, Mat. Sb., 186 (1995), 879-900.  doi: 10.1070/SM1995v186n06ABEH000047.  Google Scholar

[6]

L. C. Evans, Partial Differential Equations, Graduate studies in mathematics, American Mathematical Society, 2010. Available from: https://books.google.es/books?id=Xnu0o_EJrCQC. doi: 10.1090/gsm/019.  Google Scholar

[7]

E. Fernández-CaraD. Nina-HuamánM. R. Nuñez-Chávez and F. B. Vieira, On the theoretical and numerical control of a one-dimensional nonlinear parabolic partial differential equation, J. Optim. Theory Appl.s, 175 (2017), 652-682.  doi: 10.1007/s10957-017-1190-4.  Google Scholar

[8]

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514.   Google Scholar

[9]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.  Google Scholar

[10]

O. Yu. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev Spaces of negative order and exact controllability for semilinear parabolic equations, Publ. Res. Inst. Math. Sci., 39 (2003), 227-274.  doi: 10.2977/prims/1145476103.  Google Scholar

[11]

O. A. Ladyzhenskaya and N. N. Ural'ceva, Linear and Quasilinear Elliptic Equations, Translations by Scripta Technica, Inc, Academy Press, New York and London, 1968.  Google Scholar

[12]

O. A. Ladyžhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, AMS, Providence, RI, 1968. Available from: https://books.google.es/books?id=dolUcRSDPgkC.  Google Scholar

[13]

K. Le Balc'h, Controllability of a $4 \times 4$ quadratic reaction-diffusion system, J. Differential Equations, 266 (2019), 3100-3188.  doi: 10.1016/j.jde.2018.08.046.  Google Scholar

[14]

G. Lebeau and L. Robbiano, Contrôle exact de léquation de la chaleur, Communications in Partial Differential Equations, 20 (1995), 335-356.   Google Scholar

[15]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 1996. Available from: https://books.google.es/books?id=s9Guiwylm3cC. doi: 10.1142/3302.  Google Scholar

[16]

J.-L. Lions, Controlablité exacte des syst$\grave{e}$mes distribués: Remarques sur la théorie générale et les applications, Analysis and Optimization System, Springer, (1986), 3–14. doi: 10.1007/BFb0007542.  Google Scholar

[17]

J. L. Lions and E. Magenes, Problemes aux Limites non Homogenes et Applications, Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelberg, vol 1, 1968. Google Scholar

[18]

X. Liu and X. Zhang, Local controllability of multidimensional quasi-linear parabolic equations, SIAM J. Control Optim., 50 (2012), 2046-2064.  doi: 10.1137/110851808.  Google Scholar

[19]

J. LohéacE. Trélat and E. Zuazua, Minimal controllability time for the heat equation under unilateral state or control constraints, Math. Models Methods Appl. Sci., 27 (2017), 1587-1644.  doi: 10.1142/S0218202517500270.  Google Scholar

[20]

D. Pighin and E. Zuazua, Controllability under positive constraints of semilinear heat equations, Math. Control Relat. Fields, 8 (2018), 935-964.  doi: 10.3934/mcrf.2018041.  Google Scholar

[21]

C. PoucholE. Trélat and E. Zuazua, Phase portrait control for 1d monostable and bistable reaction-diffusion equations, Nonlinearity, 32 (2019), 884-909.  doi: 10.1088/1361-6544/aaf07e.  Google Scholar

[22]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, New York, 2012. Available from: https://books.google.es/books?id=JUXhBwAAQBAJ. Google Scholar

[23]

E. J. P. G. Schmidt, Boundary control for the heat equation with steady-state targets, J. Differential Equations, 78 (1989), 89-121.  doi: 10.1016/0022-0396(89)90077-6.  Google Scholar

[24]

E. Zeidler, Nonlinear Functional Analysis and its Applications I: Fixed-Point Theorems, Springer-Verlag, New York, Berlin, Heidelberg, Tokio, 1986.  Google Scholar

show all references

References:
[1]

V. M. Alekseev, V. M. Tikhomorov and S. V. Formin, Optimal Control, Consultants Bureau, New York, 1987. doi: 10.1007/978-1-4615-7551-1.  Google Scholar

[2]

M. Beceanu, Local exact controllability of the diffusion equation in one dimension, Abstr. Appl. Anal., 2003 (2003), 793-811.  doi: 10.1155/S1085337503303033.  Google Scholar

[3]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer New York, 2010. Available from: https://books.google.es/books?id=GAA2XqOIIGoC.  Google Scholar

[4]

R. Du, Null controllability for a class of degenerate parabolic equations with the gradient terms, J. Evol. Equ., 19 (2019), 585-613.  doi: 10.1007/s00028-019-00487-8.  Google Scholar

[5]

O. Yu. Émanuvilov, Controllability of parabolic equations, Mat. Sb., 186 (1995), 879-900.  doi: 10.1070/SM1995v186n06ABEH000047.  Google Scholar

[6]

L. C. Evans, Partial Differential Equations, Graduate studies in mathematics, American Mathematical Society, 2010. Available from: https://books.google.es/books?id=Xnu0o_EJrCQC. doi: 10.1090/gsm/019.  Google Scholar

[7]

E. Fernández-CaraD. Nina-HuamánM. R. Nuñez-Chávez and F. B. Vieira, On the theoretical and numerical control of a one-dimensional nonlinear parabolic partial differential equation, J. Optim. Theory Appl.s, 175 (2017), 652-682.  doi: 10.1007/s10957-017-1190-4.  Google Scholar

[8]

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514.   Google Scholar

[9]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.  Google Scholar

[10]

O. Yu. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev Spaces of negative order and exact controllability for semilinear parabolic equations, Publ. Res. Inst. Math. Sci., 39 (2003), 227-274.  doi: 10.2977/prims/1145476103.  Google Scholar

[11]

O. A. Ladyzhenskaya and N. N. Ural'ceva, Linear and Quasilinear Elliptic Equations, Translations by Scripta Technica, Inc, Academy Press, New York and London, 1968.  Google Scholar

[12]

O. A. Ladyžhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, AMS, Providence, RI, 1968. Available from: https://books.google.es/books?id=dolUcRSDPgkC.  Google Scholar

[13]

K. Le Balc'h, Controllability of a $4 \times 4$ quadratic reaction-diffusion system, J. Differential Equations, 266 (2019), 3100-3188.  doi: 10.1016/j.jde.2018.08.046.  Google Scholar

[14]

G. Lebeau and L. Robbiano, Contrôle exact de léquation de la chaleur, Communications in Partial Differential Equations, 20 (1995), 335-356.   Google Scholar

[15]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 1996. Available from: https://books.google.es/books?id=s9Guiwylm3cC. doi: 10.1142/3302.  Google Scholar

[16]

J.-L. Lions, Controlablité exacte des syst$\grave{e}$mes distribués: Remarques sur la théorie générale et les applications, Analysis and Optimization System, Springer, (1986), 3–14. doi: 10.1007/BFb0007542.  Google Scholar

[17]

J. L. Lions and E. Magenes, Problemes aux Limites non Homogenes et Applications, Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelberg, vol 1, 1968. Google Scholar

[18]

X. Liu and X. Zhang, Local controllability of multidimensional quasi-linear parabolic equations, SIAM J. Control Optim., 50 (2012), 2046-2064.  doi: 10.1137/110851808.  Google Scholar

[19]

J. LohéacE. Trélat and E. Zuazua, Minimal controllability time for the heat equation under unilateral state or control constraints, Math. Models Methods Appl. Sci., 27 (2017), 1587-1644.  doi: 10.1142/S0218202517500270.  Google Scholar

[20]

D. Pighin and E. Zuazua, Controllability under positive constraints of semilinear heat equations, Math. Control Relat. Fields, 8 (2018), 935-964.  doi: 10.3934/mcrf.2018041.  Google Scholar

[21]

C. PoucholE. Trélat and E. Zuazua, Phase portrait control for 1d monostable and bistable reaction-diffusion equations, Nonlinearity, 32 (2019), 884-909.  doi: 10.1088/1361-6544/aaf07e.  Google Scholar

[22]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, New York, 2012. Available from: https://books.google.es/books?id=JUXhBwAAQBAJ. Google Scholar

[23]

E. J. P. G. Schmidt, Boundary control for the heat equation with steady-state targets, J. Differential Equations, 78 (1989), 89-121.  doi: 10.1016/0022-0396(89)90077-6.  Google Scholar

[24]

E. Zeidler, Nonlinear Functional Analysis and its Applications I: Fixed-Point Theorems, Springer-Verlag, New York, Berlin, Heidelberg, Tokio, 1986.  Google Scholar

Figure 1.  The stair-case method. Trajectory of state-control in blue. Path of steady states in red
Figure 2.  Trajectory of state-control in blue. Target trajectory in red
Figure 3.  Initial datum $ \varphi^T $ for the adjoint system
[1]

Bao-Zhu Guo, Liang Zhang. Local exact controllability to positive trajectory for parabolic system of chemotaxis. Mathematical Control & Related Fields, 2016, 6 (1) : 143-165. doi: 10.3934/mcrf.2016.6.143

[2]

Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control & Related Fields, 2020, 10 (1) : 89-112. doi: 10.3934/mcrf.2019031

[3]

Karine Beauchard, Morgan Morancey. Local controllability of 1D Schrödinger equations with bilinear control and minimal time. Mathematical Control & Related Fields, 2014, 4 (2) : 125-160. doi: 10.3934/mcrf.2014.4.125

[4]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[5]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[6]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[7]

Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks & Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014

[8]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[9]

GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803

[10]

Haiyan Wang. Positive radial solutions for quasilinear equations in the annulus. Conference Publications, 2005, 2005 (Special) : 878-885. doi: 10.3934/proc.2005.2005.878

[11]

Jinggang Tan. Positive solutions for non local elliptic problems. Discrete & Continuous Dynamical Systems, 2013, 33 (2) : 837-859. doi: 10.3934/dcds.2013.33.837

[12]

Xiang-Dong Fang. Positive solutions for quasilinear Schrödinger equations in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1603-1615. doi: 10.3934/cpaa.2017077

[13]

Antonio Ambrosetti, Zhi-Qiang Wang. Positive solutions to a class of quasilinear elliptic equations on $\mathbb R$. Discrete & Continuous Dynamical Systems, 2003, 9 (1) : 55-68. doi: 10.3934/dcds.2003.9.55

[14]

Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97

[15]

Fang-Fang Liao, Chun-Lei Tang. Four positive solutions of a quasilinear elliptic equation in $ R^N$. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2577-2600. doi: 10.3934/cpaa.2013.12.2577

[16]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[17]

Lynnyngs Kelly Arruda, Francisco Odair de Paiva, Ilma Marques. A remark on multiplicity of positive solutions for a class of quasilinear elliptic systems. Conference Publications, 2011, 2011 (Special) : 112-116. doi: 10.3934/proc.2011.2011.112

[18]

João Marcos do Ó, Sebastián Lorca, Justino Sánchez, Pedro Ubilla. Positive radial solutions for some quasilinear elliptic systems in exterior domains. Communications on Pure & Applied Analysis, 2006, 5 (3) : 571-581. doi: 10.3934/cpaa.2006.5.571

[19]

Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004

[20]

Danijela Damjanovic, Anatole Katok. Local rigidity of homogeneous parabolic actions: I. A model case. Journal of Modern Dynamics, 2011, 5 (2) : 203-235. doi: 10.3934/jmd.2011.5.203

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (23)
  • HTML views (32)
  • Cited by (0)

Other articles
by authors

[Back to Top]