• Previous Article
    Uncertainty damping in kinetic traffic models by driver-assist controls
  • MCRF Home
  • This Issue
  • Next Article
    A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system
doi: 10.3934/mcrf.2021025

A nonzero-sum risk-sensitive stochastic differential game in the orthant

1. 

Department of Mathematics, Indian Institute of Science, Bangalore 560012, India

2. 

Department of Mathematics, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India

* Corresponding author: Somnath Pradhan

Received  July 2020 Revised  January 2021 Published  April 2021

Fund Project: This work is partially supported by UGC Center for Advanced Study

We study a nonzero-sum risk-sensitive stochastic differential game for controlled reflecting diffusion processes in the nonnegative orthant. We treat two cost evaluation criteria, namely, discounted cost and ergodic cost. Under certain assumptions, we establish the existence of Nash equilibria. Also, we completely characterize a Nash equilibrium for the ergodic cost criterion in the space of stationary Markov strategies.

Citation: Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021025
References:
[1]

R. A. Adams, Sobolev Spaces, Academic Press, New York 1975.  Google Scholar

[2]

A. Arapostathis and A. Biswas, Infinite horizon risk-sensitive control of diffusions without any blanket stability assumptions, Stochastic Process. Appl., 128 (2018), 1485-1524.  doi: 10.1016/j.spa.2017.08.001.  Google Scholar

[3]

A. ArapostathisA. BiswasV. S. Borkar and K. S. Kumar, A variational characterization of the risk-sensitive average reward for controlled diffusions on $\mathbb{R}^{d}$, SIAM J. Control Optim., 58 (2020), 3785-3813.  doi: 10.1137/20M1329202.  Google Scholar

[4]

A. Arapostathis, A. Biswas and S. Saha, Strict monotonicity of principal eigenvalues of elliptic operators in $\mathbb{R}^{d}$ and risk-sensitive control, J. Math. Pures Appl., 124 (2019), 169–219. doi: 10.1016/j.matpur.2018.05.008.  Google Scholar

[5]

A. Arapostathis, V. S. Borkar and M. K. Ghosh, Ergodic Control of Diffusion Processes, Cambridge University Press, Cambridge, U.K. 2012.  Google Scholar

[6]

A. ArapostathisV. S. Borkar and K. S. Kumar, Risk-sensitive control and an abstract Collatz-Wielandt formula, J. Theoret. Probab., 29 (2016), 1458-1484.  doi: 10.1007/s10959-015-0616-x.  Google Scholar

[7]

A. Bagchi and K. Suresh Kumar, Dynamic asset management with risk-sensitive criterion and non-negative factor constraints: A differential game approach, Stochastics, 81 (2009), 503-530.  doi: 10.1080/17442500902774917.  Google Scholar

[8]

A. Basu and M. K. Ghosh, Zero-sum risk-sensitive stochastic differential games, Math. Oper. Res., 37 (2012), 437-449.  doi: 10.1287/moor.1120.0542.  Google Scholar

[9]

V. E. Bene$\breve{s}$, Existence of optimal strategies based on specified information of a class of stochastic decision problems, SIAM J. Control, 8 (1970), 179-188.  doi: 10.1137/0308012.  Google Scholar

[10]

A. Biswas, An eigenvalue approach to the risk-sensitive control problem in near monotone case, Systems Control Lett., 60 (2011), 181-184.  doi: 10.1016/j.sysconle.2010.12.002.  Google Scholar

[11]

A. Biswas, V. S. Borkar and K. Suresh Kumar, Risk-sensitive control with near monotone cost, Appl. Math. Optim., 62 (2009), 145–163. Errata corriege Ⅰ. ibid 62 (2010), 165–167. Errata corriege Ⅱ. ibid 62 (2010), 435–438. doi: 10.1007/s00245-010-9119-4.  Google Scholar

[12]

A. Biswas and S. Saha, Zero-sum stochastic differential games with risk-sensitive cost, App. Math. Optim., 81 (2020), 113-140.  doi: 10.1007/s00245-018-9479-8.  Google Scholar

[13]

V. Borkar and A. Budhiraja, Ergodic control for constained diffusions: Characterization using HJB equation, SIAM J. Control Optim., 43 (2005), 1467-1492.  doi: 10.1137/S0363012902417619.  Google Scholar

[14]

V. S. Borkar and M. K. Ghosh, Stochastic differential games: occupation measure based approach, J. Optim. Theory Appl., 73 (1992), 359-385. Errata corriege. ibid 88 (1996), 251–252. doi: 10.1007/BF02192034.  Google Scholar

[15]

A. Budhiraja, An ergodic control problem for constrained diffusion processes: Existence of optimal Markov control, SIAM J. Control Optim., 42 (2003), 532-558.  doi: 10.1137/S0363012901379073.  Google Scholar

[16]

K. L. Chung and Z. X. Zhao, From Brownian Motion to Schrödinger's Equation, Grundlehren der Mathematischen Wissenschaften, 312, Springer, Berlin, 1995. doi: 10.1007/978-3-642-57856-4.  Google Scholar

[17]

K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121-126.  doi: 10.1073/pnas.38.2.121.  Google Scholar

[18]

J. Filar and K. Vrieze, Competitive Markov Decision Processes, Springer-Verlag, New York, 1997.  Google Scholar

[19]

S. K. GauttamK. S. Kumar and C. Pal, Risk-sensitive control of reflected diffusion process on orthrant, Pure Appl. Funct. Anal., 2 (2017), 477-510.   Google Scholar

[20]

M. K. Ghosh and A. Bagchi, Stochastic games with average payoff criterion, Appl. Math. Optim., 38 (1998), 283-301.  doi: 10.1007/s002459900092.  Google Scholar

[21]

M. K. Ghosh and S. Pradhan, Risk-sensitive stochastic differential game with reflecting diffusions, Stoch. Anal. Appl., 36 (2018), 1-27.  doi: 10.1080/07362994.2017.1356732.  Google Scholar

[22]

M. K. Ghosh and S. Pradhan, Zero-sum risk-sensitive stochastic differential games with reflecting diffusions in the orthant, ESAIM Control Optim. Calc. Var., 26 (2020), Paper No. 114, 33 pp. doi: 10.1051/cocv/2020029.  Google Scholar

[23]

M. K. Ghosh and K. Suresh Kumar, A stochastic differential game in the orthant, J. Math. Anal. Appl., 265 (2002), 12-37.  doi: 10.1006/jmaa.2001.7679.  Google Scholar

[24]

M. K. Ghosh and K. Suresh Kumar, A nonzero-sum stochastic differential game in the orthant, J. Math. Anal. Appl., 305 (2005), 158-174.  doi: 10.1016/j.jmaa.2004.11.002.  Google Scholar

[25]

M. K. Ghosh and K. Suresh Kumar, Nonzero-sum risk-sensitive stochastic differential games with reflecting diffusions, Comput. Appl. Math., 18 (1999), 355-368.   Google Scholar

[26]

M. K. Ghosh, K. Suresh Kumar and C. Pal, Nonzero-sum risk-sensitive stochastic differential games, arXiv: 1604.01142 Google Scholar

[27]

M. K. Ghosh, K. Suresh Kumar, C. Pal and S. Pradhan, Nonzero-sum risk-sensitive stochastic differential games with discounted costs, Stochastic Analysis and Applications, 39 (2021), 306-326. doi: 10.1080/07362994.2020.1796707.  Google Scholar

[28]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 224, 2nd ed., Springer, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[29]

C. J. HimmelbergT. ParthasarathyT. E. S. Raghavan and F. S. Van Fleck, Existence of $p$-equilibrium and optimal stationary strategies in stochastic games, Proc. Amer. Math. Soc., 60 (1976), 245-251.  doi: 10.2307/2041151.  Google Scholar

[30]

D. L. Iglehart and W. Whitt, Multiple channel queues in heavy traffic, Adv. in Appl. Prob., 2 (1970), 150-177.  doi: 10.2307/3518347.  Google Scholar

[31]

H. J. Kushner and L. F. Martins, Limit theorems for pathwise average cost per unit time problems for controlled queues in heavy traffic, Stochastics Stochastics Rep., 42 (1993), 25-51.  doi: 10.1080/17442509308833808.  Google Scholar

[32]

H. J. Kushner and K. M. Ramachandran, Optimal and approximately optimal control policies for queues in heavy traffic, SIAM J. Control Optim., 27 (1989), 1293–1318. doi: 10.1137/0327066.  Google Scholar

[33]

A. J. Lemoine, Network of queues - A survey of weak convergence results, Management Science, 24 (1978), 1175-1193.  doi: 10.1287/mnsc.24.11.1175.  Google Scholar

[34]

G. Leoni, A First Course in Sobolev Spaces, Graduate Studies in Mathematics, 105, AMS, Rhode Island USA, 2009. doi: 10.1090/gsm/105.  Google Scholar

[35]

G. M. Lieberman, Oblique Derivative Problems for Elliptic Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. doi: 10.1142/8679.  Google Scholar

[36]

G. M. Lieberman, Local estimates for subsolutions and supersolutions of oblique derivative problems for general second order elliptic equations, Trans. Amer. Math. Soc., 304 (1987), 343-353.  doi: 10.1090/S0002-9947-1987-0906819-0.  Google Scholar

[37]

P.-L. Lions and A.-S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math., 37 (1984), 511-537.  doi: 10.1002/cpa.3160370408.  Google Scholar

[38]

J.-L. Menaldi and M. Robin, Remarks on risk-sensitive control problems, Appl. Math. Optim., 52 (2005), 297-310.  doi: 10.1007/s00245-005-0829-y.  Google Scholar

[39]

A. S. Nowak, Notes on risk-sensitive Nash equilibria. Advances in dynamic games, Ann. International. Soc. Dynam. Games, 7 (2005), 95-109.  doi: 10.1007/0-8176-4429-6_5.  Google Scholar

[40]

S. Pradhan, Risk-sensitive ergodic control of reflected diffusion processes in orthant, Appl. Math. Optim., (2019), to appear. doi: 10.1007/s00245-019-09606-w.  Google Scholar

[41]

M. I. Reiman, Open queueing networks in heavy traffic, Math. Oper. Res., 9 (1984), 441-458.  doi: 10.1287/moor.9.3.441.  Google Scholar

[42]

A. Yu. Veretennikov, On strong and weak solutions of one-dimensional stochastic equations with boundary conditions, Theory Probab. Appl., 26 (1981), 670-686.   Google Scholar

[43]

J. Warga, Functions of relaxed controls, SIAM J. Control, 5 (1967), 628-641.  doi: 10.1137/0305042.  Google Scholar

[44]

Z. Wu, J. Yin and C. Wang, Elliptic and Parabolic Equations, World Scientific, Singapore, 2006. doi: 10.1142/6238.  Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces, Academic Press, New York 1975.  Google Scholar

[2]

A. Arapostathis and A. Biswas, Infinite horizon risk-sensitive control of diffusions without any blanket stability assumptions, Stochastic Process. Appl., 128 (2018), 1485-1524.  doi: 10.1016/j.spa.2017.08.001.  Google Scholar

[3]

A. ArapostathisA. BiswasV. S. Borkar and K. S. Kumar, A variational characterization of the risk-sensitive average reward for controlled diffusions on $\mathbb{R}^{d}$, SIAM J. Control Optim., 58 (2020), 3785-3813.  doi: 10.1137/20M1329202.  Google Scholar

[4]

A. Arapostathis, A. Biswas and S. Saha, Strict monotonicity of principal eigenvalues of elliptic operators in $\mathbb{R}^{d}$ and risk-sensitive control, J. Math. Pures Appl., 124 (2019), 169–219. doi: 10.1016/j.matpur.2018.05.008.  Google Scholar

[5]

A. Arapostathis, V. S. Borkar and M. K. Ghosh, Ergodic Control of Diffusion Processes, Cambridge University Press, Cambridge, U.K. 2012.  Google Scholar

[6]

A. ArapostathisV. S. Borkar and K. S. Kumar, Risk-sensitive control and an abstract Collatz-Wielandt formula, J. Theoret. Probab., 29 (2016), 1458-1484.  doi: 10.1007/s10959-015-0616-x.  Google Scholar

[7]

A. Bagchi and K. Suresh Kumar, Dynamic asset management with risk-sensitive criterion and non-negative factor constraints: A differential game approach, Stochastics, 81 (2009), 503-530.  doi: 10.1080/17442500902774917.  Google Scholar

[8]

A. Basu and M. K. Ghosh, Zero-sum risk-sensitive stochastic differential games, Math. Oper. Res., 37 (2012), 437-449.  doi: 10.1287/moor.1120.0542.  Google Scholar

[9]

V. E. Bene$\breve{s}$, Existence of optimal strategies based on specified information of a class of stochastic decision problems, SIAM J. Control, 8 (1970), 179-188.  doi: 10.1137/0308012.  Google Scholar

[10]

A. Biswas, An eigenvalue approach to the risk-sensitive control problem in near monotone case, Systems Control Lett., 60 (2011), 181-184.  doi: 10.1016/j.sysconle.2010.12.002.  Google Scholar

[11]

A. Biswas, V. S. Borkar and K. Suresh Kumar, Risk-sensitive control with near monotone cost, Appl. Math. Optim., 62 (2009), 145–163. Errata corriege Ⅰ. ibid 62 (2010), 165–167. Errata corriege Ⅱ. ibid 62 (2010), 435–438. doi: 10.1007/s00245-010-9119-4.  Google Scholar

[12]

A. Biswas and S. Saha, Zero-sum stochastic differential games with risk-sensitive cost, App. Math. Optim., 81 (2020), 113-140.  doi: 10.1007/s00245-018-9479-8.  Google Scholar

[13]

V. Borkar and A. Budhiraja, Ergodic control for constained diffusions: Characterization using HJB equation, SIAM J. Control Optim., 43 (2005), 1467-1492.  doi: 10.1137/S0363012902417619.  Google Scholar

[14]

V. S. Borkar and M. K. Ghosh, Stochastic differential games: occupation measure based approach, J. Optim. Theory Appl., 73 (1992), 359-385. Errata corriege. ibid 88 (1996), 251–252. doi: 10.1007/BF02192034.  Google Scholar

[15]

A. Budhiraja, An ergodic control problem for constrained diffusion processes: Existence of optimal Markov control, SIAM J. Control Optim., 42 (2003), 532-558.  doi: 10.1137/S0363012901379073.  Google Scholar

[16]

K. L. Chung and Z. X. Zhao, From Brownian Motion to Schrödinger's Equation, Grundlehren der Mathematischen Wissenschaften, 312, Springer, Berlin, 1995. doi: 10.1007/978-3-642-57856-4.  Google Scholar

[17]

K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121-126.  doi: 10.1073/pnas.38.2.121.  Google Scholar

[18]

J. Filar and K. Vrieze, Competitive Markov Decision Processes, Springer-Verlag, New York, 1997.  Google Scholar

[19]

S. K. GauttamK. S. Kumar and C. Pal, Risk-sensitive control of reflected diffusion process on orthrant, Pure Appl. Funct. Anal., 2 (2017), 477-510.   Google Scholar

[20]

M. K. Ghosh and A. Bagchi, Stochastic games with average payoff criterion, Appl. Math. Optim., 38 (1998), 283-301.  doi: 10.1007/s002459900092.  Google Scholar

[21]

M. K. Ghosh and S. Pradhan, Risk-sensitive stochastic differential game with reflecting diffusions, Stoch. Anal. Appl., 36 (2018), 1-27.  doi: 10.1080/07362994.2017.1356732.  Google Scholar

[22]

M. K. Ghosh and S. Pradhan, Zero-sum risk-sensitive stochastic differential games with reflecting diffusions in the orthant, ESAIM Control Optim. Calc. Var., 26 (2020), Paper No. 114, 33 pp. doi: 10.1051/cocv/2020029.  Google Scholar

[23]

M. K. Ghosh and K. Suresh Kumar, A stochastic differential game in the orthant, J. Math. Anal. Appl., 265 (2002), 12-37.  doi: 10.1006/jmaa.2001.7679.  Google Scholar

[24]

M. K. Ghosh and K. Suresh Kumar, A nonzero-sum stochastic differential game in the orthant, J. Math. Anal. Appl., 305 (2005), 158-174.  doi: 10.1016/j.jmaa.2004.11.002.  Google Scholar

[25]

M. K. Ghosh and K. Suresh Kumar, Nonzero-sum risk-sensitive stochastic differential games with reflecting diffusions, Comput. Appl. Math., 18 (1999), 355-368.   Google Scholar

[26]

M. K. Ghosh, K. Suresh Kumar and C. Pal, Nonzero-sum risk-sensitive stochastic differential games, arXiv: 1604.01142 Google Scholar

[27]

M. K. Ghosh, K. Suresh Kumar, C. Pal and S. Pradhan, Nonzero-sum risk-sensitive stochastic differential games with discounted costs, Stochastic Analysis and Applications, 39 (2021), 306-326. doi: 10.1080/07362994.2020.1796707.  Google Scholar

[28]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 224, 2nd ed., Springer, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[29]

C. J. HimmelbergT. ParthasarathyT. E. S. Raghavan and F. S. Van Fleck, Existence of $p$-equilibrium and optimal stationary strategies in stochastic games, Proc. Amer. Math. Soc., 60 (1976), 245-251.  doi: 10.2307/2041151.  Google Scholar

[30]

D. L. Iglehart and W. Whitt, Multiple channel queues in heavy traffic, Adv. in Appl. Prob., 2 (1970), 150-177.  doi: 10.2307/3518347.  Google Scholar

[31]

H. J. Kushner and L. F. Martins, Limit theorems for pathwise average cost per unit time problems for controlled queues in heavy traffic, Stochastics Stochastics Rep., 42 (1993), 25-51.  doi: 10.1080/17442509308833808.  Google Scholar

[32]

H. J. Kushner and K. M. Ramachandran, Optimal and approximately optimal control policies for queues in heavy traffic, SIAM J. Control Optim., 27 (1989), 1293–1318. doi: 10.1137/0327066.  Google Scholar

[33]

A. J. Lemoine, Network of queues - A survey of weak convergence results, Management Science, 24 (1978), 1175-1193.  doi: 10.1287/mnsc.24.11.1175.  Google Scholar

[34]

G. Leoni, A First Course in Sobolev Spaces, Graduate Studies in Mathematics, 105, AMS, Rhode Island USA, 2009. doi: 10.1090/gsm/105.  Google Scholar

[35]

G. M. Lieberman, Oblique Derivative Problems for Elliptic Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. doi: 10.1142/8679.  Google Scholar

[36]

G. M. Lieberman, Local estimates for subsolutions and supersolutions of oblique derivative problems for general second order elliptic equations, Trans. Amer. Math. Soc., 304 (1987), 343-353.  doi: 10.1090/S0002-9947-1987-0906819-0.  Google Scholar

[37]

P.-L. Lions and A.-S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math., 37 (1984), 511-537.  doi: 10.1002/cpa.3160370408.  Google Scholar

[38]

J.-L. Menaldi and M. Robin, Remarks on risk-sensitive control problems, Appl. Math. Optim., 52 (2005), 297-310.  doi: 10.1007/s00245-005-0829-y.  Google Scholar

[39]

A. S. Nowak, Notes on risk-sensitive Nash equilibria. Advances in dynamic games, Ann. International. Soc. Dynam. Games, 7 (2005), 95-109.  doi: 10.1007/0-8176-4429-6_5.  Google Scholar

[40]

S. Pradhan, Risk-sensitive ergodic control of reflected diffusion processes in orthant, Appl. Math. Optim., (2019), to appear. doi: 10.1007/s00245-019-09606-w.  Google Scholar

[41]

M. I. Reiman, Open queueing networks in heavy traffic, Math. Oper. Res., 9 (1984), 441-458.  doi: 10.1287/moor.9.3.441.  Google Scholar

[42]

A. Yu. Veretennikov, On strong and weak solutions of one-dimensional stochastic equations with boundary conditions, Theory Probab. Appl., 26 (1981), 670-686.   Google Scholar

[43]

J. Warga, Functions of relaxed controls, SIAM J. Control, 5 (1967), 628-641.  doi: 10.1137/0305042.  Google Scholar

[44]

Z. Wu, J. Yin and C. Wang, Elliptic and Parabolic Equations, World Scientific, Singapore, 2006. doi: 10.1142/6238.  Google Scholar

[1]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

[2]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[3]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[4]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[5]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[6]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[7]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[8]

İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021010

[9]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[10]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[11]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[12]

Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021057

[13]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[14]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[15]

José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025

[16]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[17]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[18]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[19]

Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215

[20]

Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021014

2019 Impact Factor: 0.857

Article outline

[Back to Top]