doi: 10.3934/mcrf.2021027

Feedback stabilization of parabolic systems with input delay

Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France

* Corresponding author: Julie Valein

Received  October 2020 Revised  February 2021 Published  April 2021

Fund Project: The two first authors were partially supported by the ANR research project IFSMACS (ANR-15-CE40-0010). The third author was partially supported by the ANR research projects ISDEEC (ANR-16-CE40-0013) and ANR ODISSE (ANR-19-CE48-0004-01)

This work is devoted to the stabilization of parabolic systems with a finite-dimensional control subjected to a constant delay. Our main result shows that the Fattorini-Hautus criterion yields the existence of such a feedback control, as in the case of stabilization without delay. The proof consists in splitting the system into a finite dimensional unstable part and a stable infinite-dimensional part and to apply the Artstein transformation on the finite-dimensional system to remove the delay in the control. Using our abstract result, we can prove new results for the stabilization of parabolic systems with constant delay: the $ N $-dimensional linear reaction-convection-diffusion equation with $ N\geq 1 $ and the Oseen system. We end the article by showing that this theory can be used to stabilize nonlinear parabolic systems with input delay by proving the local feedback distributed stabilization of the Navier-Stokes system around a stationary state.

Citation: Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021027
References:
[1]

C. Abdallah, P. Dorato, J. Benitez-Read and R. Byrne, Delayed positive feedback can stabilize oscillatory systems, In 1993 American Control Conference, IEEE, (1993), 3106–3107. Google Scholar

[2]

Z. Artstein, Linear systems with delayed controls: A reduction, IEEE Trans. Automat. Control, 27 (1982), 869-879.  doi: 10.1109/TAC.1982.1103023.  Google Scholar

[3]

A. Azouani and E. S. Titi, Feedback control of nonlinear dissipative systems by finite determining parameters—a reaction-diffusion paradigm, Evol. Equ. Control Theory, 3 (2014), 579-594.  doi: 10.3934/eect.2014.3.579.  Google Scholar

[4]

M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: Application to the Navier-Stokes system, SIAM J. Control Optim., 49 (2011), 420-463.  doi: 10.1137/090778146.  Google Scholar

[5]

M. Badra and T. Takahashi, On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems, ESAIM Control Optim. Calc. Var., 20 (2014), 924-956.  doi: 10.1051/cocv/2014002.  Google Scholar

[6]

V. Barbu, Boundary stabilization of equilibrium solutions to parabolic equations, IEEE Trans. Automat. Control, 58 (2013), 2416-2420.  doi: 10.1109/TAC.2013.2254013.  Google Scholar

[7]

V. Barbu and I. Lasiecka, The unique continuation property of eigenfunctions to Stokes-Oseen operator is generic with respect to the coefficients, Nonlinear Anal., 75 (2012), 4384-4397.  doi: 10.1016/j.na.2011.07.056.  Google Scholar

[8]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.  doi: 10.1512/iumj.2004.53.2445.  Google Scholar

[9]

N. Bekiaris-Liberis and M. Krstic, Nonlinear Control under Nonconstant Delays, volume 25 of Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013. doi: 10.1137/1.9781611972856.  Google Scholar

[10]

N. Bekiaris-Liberis and M. Krstic, Predictor-feedback stabilization of multi-input nonlinear systems, IEEE Trans. Automat. Control, 62 (2017), 516-531.  doi: 10.1109/TAC.2016.2558293.  Google Scholar

[11]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, second edition, 2007. doi: 10.1007/978-0-8176-4581-6.  Google Scholar

[12]

D. Bresch-Pietri and M. Krstic, Delay-adaptive control for nonlinear systems, IEEE Trans. Automat. Control, 59 (2014), 1203-1218.  doi: 10.1109/TAC.2014.2298711.  Google Scholar

[13]

D. Bresch-Pietri and M. Krstic, Output-feedback adaptive control of a wave PDE with boundary anti-damping, Automatica J. IFAC, 50 (2014), 1407-1415.  doi: 10.1016/j.automatica.2014.02.040.  Google Scholar

[14]

D. Bresch-PietriC. Prieur and E. Trélat, New formulation of predictors for finite-dimensional linear control systems with input delay, Systems Control Lett., 113 (2018), 9-16.  doi: 10.1016/j.sysconle.2017.12.007.  Google Scholar

[15]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.  Google Scholar

[16]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[17]

L. C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998.  Google Scholar

[18]

C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes, Comm. Partial Differential Equations, 21 (1996), 573-596.  doi: 10.1080/03605309608821198.  Google Scholar

[19]

H. O. Fattorini, Some remarks on complete controllability, SIAM J. Control, 4 (1966), 686-694.  doi: 10.1137/0304048.  Google Scholar

[20]

M. L. J. Hautus, Controllability and observability conditions of linear autonomous systems, Nederl. Akad. Wetensch. Proc. Ser., 72 (1969), 443-448.   Google Scholar

[21]

L. Hörmander, Linear Partial Differential Operators, Springer Verlag, Berlin-New York, 1976.  Google Scholar

[22]

T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132. Springer-Verlag New York, Inc., New York, 1966.  Google Scholar

[23]

M. Krstic, Control of an unstable reaction-diffusion PDE with long input delay, Systems Control Lett., 58 (2009), 773-782.  doi: 10.1016/j.sysconle.2009.08.006.  Google Scholar

[24]

K. Kunisch and S. S. Rodrigues, Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 67, 38 pp. doi: 10.1051/cocv/2018054.  Google Scholar

[25]

H. Lhachemi and C. Prieur, Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control, IEEE Trans. Automat. Control, 66 (2021), 105-120.  doi: 10.1109/TAC.2020.2975003.  Google Scholar

[26]

H. Lhachemi and R. Shorten, Boundary input-to-state stabilization of a damped Euler-Bernoulli beam in the presence of a state-delay, https://arXiv.org/pdf/1912.01117.pdf, 2019. Google Scholar

[27]

H. Lhachemi, R. Shorten and C. Prieur, Exponential input-to-state stabilization of a class of diagonal boundary control systems with delay boundary control, Systems Control Lett., 138 (2020), 104651, 10 pp. doi: 10.1016/j.sysconle.2020.104651.  Google Scholar

[28]

A. Z. Manitius and A. W. Olbrot, Finite spectrum assignment problem for systems with delays, IEEE Trans. Automat. Control, 24 (1979), 541-553.  doi: 10.1109/TAC.1979.1102124.  Google Scholar

[29]

M. T. Nihtilä, Input delay systems: Adaptive control and lumped approximations, In Mathematics of the Analysis and Design of Process Control (Dublin, 1991/Lille, 1991), 503–512. North-Holland, Amsterdam, 1992.  Google Scholar

[30]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[31]

C. Prieur and E. Trélat, Feedback stabilization of a 1-D linear reaction-diffusion equation with delay boundary control, IEEE Trans. Automat. Control, 64 (2019), 1415-1425.  doi: 10.1109/TAC.2018.2849560.  Google Scholar

[32]

J.-P. Raymond, Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1537-1564.  doi: 10.3934/dcdsb.2010.14.1537.  Google Scholar

[33]

J.-P. Raymond, Stabilizability of infinite-dimensional systems by finite-dimensional controls, Comput. Methods Appl. Math., 19 (2019), 797-811.  doi: 10.1515/cmam-2018-0031.  Google Scholar

[34]

J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers, Discrete Contin. Dyn. Syst., 27 (2010), 1159-1187.  doi: 10.3934/dcds.2010.27.1159.  Google Scholar

[35]

R. Temam, Navier-Stokes Equations, volume 2 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, revised edition, 1979. Theory and numerical analysis, With an appendix by F. Thomasset.  Google Scholar

[36]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, volume 18 of North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

[37]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[38]

K. Yosida, Lectures on Differential and Integral Equations, Pure and Applied Mathematics, Vol. X. Interscience Publishers, New York-London, 1960.  Google Scholar

show all references

References:
[1]

C. Abdallah, P. Dorato, J. Benitez-Read and R. Byrne, Delayed positive feedback can stabilize oscillatory systems, In 1993 American Control Conference, IEEE, (1993), 3106–3107. Google Scholar

[2]

Z. Artstein, Linear systems with delayed controls: A reduction, IEEE Trans. Automat. Control, 27 (1982), 869-879.  doi: 10.1109/TAC.1982.1103023.  Google Scholar

[3]

A. Azouani and E. S. Titi, Feedback control of nonlinear dissipative systems by finite determining parameters—a reaction-diffusion paradigm, Evol. Equ. Control Theory, 3 (2014), 579-594.  doi: 10.3934/eect.2014.3.579.  Google Scholar

[4]

M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: Application to the Navier-Stokes system, SIAM J. Control Optim., 49 (2011), 420-463.  doi: 10.1137/090778146.  Google Scholar

[5]

M. Badra and T. Takahashi, On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems, ESAIM Control Optim. Calc. Var., 20 (2014), 924-956.  doi: 10.1051/cocv/2014002.  Google Scholar

[6]

V. Barbu, Boundary stabilization of equilibrium solutions to parabolic equations, IEEE Trans. Automat. Control, 58 (2013), 2416-2420.  doi: 10.1109/TAC.2013.2254013.  Google Scholar

[7]

V. Barbu and I. Lasiecka, The unique continuation property of eigenfunctions to Stokes-Oseen operator is generic with respect to the coefficients, Nonlinear Anal., 75 (2012), 4384-4397.  doi: 10.1016/j.na.2011.07.056.  Google Scholar

[8]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.  doi: 10.1512/iumj.2004.53.2445.  Google Scholar

[9]

N. Bekiaris-Liberis and M. Krstic, Nonlinear Control under Nonconstant Delays, volume 25 of Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013. doi: 10.1137/1.9781611972856.  Google Scholar

[10]

N. Bekiaris-Liberis and M. Krstic, Predictor-feedback stabilization of multi-input nonlinear systems, IEEE Trans. Automat. Control, 62 (2017), 516-531.  doi: 10.1109/TAC.2016.2558293.  Google Scholar

[11]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, second edition, 2007. doi: 10.1007/978-0-8176-4581-6.  Google Scholar

[12]

D. Bresch-Pietri and M. Krstic, Delay-adaptive control for nonlinear systems, IEEE Trans. Automat. Control, 59 (2014), 1203-1218.  doi: 10.1109/TAC.2014.2298711.  Google Scholar

[13]

D. Bresch-Pietri and M. Krstic, Output-feedback adaptive control of a wave PDE with boundary anti-damping, Automatica J. IFAC, 50 (2014), 1407-1415.  doi: 10.1016/j.automatica.2014.02.040.  Google Scholar

[14]

D. Bresch-PietriC. Prieur and E. Trélat, New formulation of predictors for finite-dimensional linear control systems with input delay, Systems Control Lett., 113 (2018), 9-16.  doi: 10.1016/j.sysconle.2017.12.007.  Google Scholar

[15]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.  Google Scholar

[16]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[17]

L. C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998.  Google Scholar

[18]

C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes, Comm. Partial Differential Equations, 21 (1996), 573-596.  doi: 10.1080/03605309608821198.  Google Scholar

[19]

H. O. Fattorini, Some remarks on complete controllability, SIAM J. Control, 4 (1966), 686-694.  doi: 10.1137/0304048.  Google Scholar

[20]

M. L. J. Hautus, Controllability and observability conditions of linear autonomous systems, Nederl. Akad. Wetensch. Proc. Ser., 72 (1969), 443-448.   Google Scholar

[21]

L. Hörmander, Linear Partial Differential Operators, Springer Verlag, Berlin-New York, 1976.  Google Scholar

[22]

T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132. Springer-Verlag New York, Inc., New York, 1966.  Google Scholar

[23]

M. Krstic, Control of an unstable reaction-diffusion PDE with long input delay, Systems Control Lett., 58 (2009), 773-782.  doi: 10.1016/j.sysconle.2009.08.006.  Google Scholar

[24]

K. Kunisch and S. S. Rodrigues, Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 67, 38 pp. doi: 10.1051/cocv/2018054.  Google Scholar

[25]

H. Lhachemi and C. Prieur, Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control, IEEE Trans. Automat. Control, 66 (2021), 105-120.  doi: 10.1109/TAC.2020.2975003.  Google Scholar

[26]

H. Lhachemi and R. Shorten, Boundary input-to-state stabilization of a damped Euler-Bernoulli beam in the presence of a state-delay, https://arXiv.org/pdf/1912.01117.pdf, 2019. Google Scholar

[27]

H. Lhachemi, R. Shorten and C. Prieur, Exponential input-to-state stabilization of a class of diagonal boundary control systems with delay boundary control, Systems Control Lett., 138 (2020), 104651, 10 pp. doi: 10.1016/j.sysconle.2020.104651.  Google Scholar

[28]

A. Z. Manitius and A. W. Olbrot, Finite spectrum assignment problem for systems with delays, IEEE Trans. Automat. Control, 24 (1979), 541-553.  doi: 10.1109/TAC.1979.1102124.  Google Scholar

[29]

M. T. Nihtilä, Input delay systems: Adaptive control and lumped approximations, In Mathematics of the Analysis and Design of Process Control (Dublin, 1991/Lille, 1991), 503–512. North-Holland, Amsterdam, 1992.  Google Scholar

[30]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[31]

C. Prieur and E. Trélat, Feedback stabilization of a 1-D linear reaction-diffusion equation with delay boundary control, IEEE Trans. Automat. Control, 64 (2019), 1415-1425.  doi: 10.1109/TAC.2018.2849560.  Google Scholar

[32]

J.-P. Raymond, Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1537-1564.  doi: 10.3934/dcdsb.2010.14.1537.  Google Scholar

[33]

J.-P. Raymond, Stabilizability of infinite-dimensional systems by finite-dimensional controls, Comput. Methods Appl. Math., 19 (2019), 797-811.  doi: 10.1515/cmam-2018-0031.  Google Scholar

[34]

J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers, Discrete Contin. Dyn. Syst., 27 (2010), 1159-1187.  doi: 10.3934/dcds.2010.27.1159.  Google Scholar

[35]

R. Temam, Navier-Stokes Equations, volume 2 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, revised edition, 1979. Theory and numerical analysis, With an appendix by F. Thomasset.  Google Scholar

[36]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, volume 18 of North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

[37]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[38]

K. Yosida, Lectures on Differential and Integral Equations, Pure and Applied Mathematics, Vol. X. Interscience Publishers, New York-London, 1960.  Google Scholar

[1]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[2]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[3]

Debanjana Mitra, Mythily Ramaswamy, Jean-Pierre Raymond. Largest space for the stabilizability of the linearized compressible Navier-Stokes system in one dimension. Mathematical Control & Related Fields, 2015, 5 (2) : 259-290. doi: 10.3934/mcrf.2015.5.259

[4]

Igor Chueshov, Alexander V. Rezounenko. Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1685-1704. doi: 10.3934/cpaa.2015.14.1685

[5]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[6]

Sandro M. Guzzo, Gabriela Planas. On a class of three dimensional Navier-Stokes equations with bounded delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 225-238. doi: 10.3934/dcdsb.2011.16.225

[7]

Grzegorz Karch, Maria E. Schonbek, Tomas P. Schonbek. Singularities of certain finite energy solutions to the Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 189-206. doi: 10.3934/dcds.2020008

[8]

Enrique Fernández-Cara. Motivation, analysis and control of the variable density Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1021-1090. doi: 10.3934/dcdss.2012.5.1021

[9]

Jean-Pierre Raymond, Laetitia Thevenet. Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1159-1187. doi: 10.3934/dcds.2010.27.1159

[10]

Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations & Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495

[11]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[12]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Three dimensional system of globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 655-673. doi: 10.3934/dcdsb.2010.14.655

[13]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[14]

Vena Pearl Bongolan-walsh, David Cheban, Jinqiao Duan. Recurrent motions in the nonautonomous Navier-Stokes system. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 255-262. doi: 10.3934/dcdsb.2003.3.255

[15]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 181-201. doi: 10.3934/dcds.2014.34.181

[16]

Xing Wang, Chang-Qi Tao, Guo-Ji Tang. Differential optimization in finite-dimensional spaces. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1495-1505. doi: 10.3934/jimo.2016.12.1495

[17]

Paolo Maria Mariano. Line defect evolution in finite-dimensional manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 575-596. doi: 10.3934/dcdsb.2012.17.575

[18]

A. Jiménez-Casas, Mario Castro, Justine Yassapan. Finite-dimensional behavior in a thermosyphon with a viscoelastic fluid. Conference Publications, 2013, 2013 (special) : 375-384. doi: 10.3934/proc.2013.2013.375

[19]

Barbara Panicucci, Massimo Pappalardo, Mauro Passacantando. On finite-dimensional generalized variational inequalities. Journal of Industrial & Management Optimization, 2006, 2 (1) : 43-53. doi: 10.3934/jimo.2006.2.43

[20]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (18)
  • HTML views (26)
  • Cited by (0)

[Back to Top]