doi: 10.3934/mcrf.2021027

Feedback stabilization of parabolic systems with input delay

Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France

* Corresponding author: Julie Valein

Received  October 2020 Revised  February 2021 Published  April 2021

Fund Project: The two first authors were partially supported by the ANR research project IFSMACS (ANR-15-CE40-0010). The third author was partially supported by the ANR research projects ISDEEC (ANR-16-CE40-0013) and ANR ODISSE (ANR-19-CE48-0004-01)

This work is devoted to the stabilization of parabolic systems with a finite-dimensional control subjected to a constant delay. Our main result shows that the Fattorini-Hautus criterion yields the existence of such a feedback control, as in the case of stabilization without delay. The proof consists in splitting the system into a finite dimensional unstable part and a stable infinite-dimensional part and to apply the Artstein transformation on the finite-dimensional system to remove the delay in the control. Using our abstract result, we can prove new results for the stabilization of parabolic systems with constant delay: the $ N $-dimensional linear reaction-convection-diffusion equation with $ N\geq 1 $ and the Oseen system. We end the article by showing that this theory can be used to stabilize nonlinear parabolic systems with input delay by proving the local feedback distributed stabilization of the Navier-Stokes system around a stationary state.

Citation: Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021027
References:
[1]

C. Abdallah, P. Dorato, J. Benitez-Read and R. Byrne, Delayed positive feedback can stabilize oscillatory systems, In 1993 American Control Conference, IEEE, (1993), 3106–3107. Google Scholar

[2]

Z. Artstein, Linear systems with delayed controls: A reduction, IEEE Trans. Automat. Control, 27 (1982), 869-879.  doi: 10.1109/TAC.1982.1103023.  Google Scholar

[3]

A. Azouani and E. S. Titi, Feedback control of nonlinear dissipative systems by finite determining parameters—a reaction-diffusion paradigm, Evol. Equ. Control Theory, 3 (2014), 579-594.  doi: 10.3934/eect.2014.3.579.  Google Scholar

[4]

M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: Application to the Navier-Stokes system, SIAM J. Control Optim., 49 (2011), 420-463.  doi: 10.1137/090778146.  Google Scholar

[5]

M. Badra and T. Takahashi, On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems, ESAIM Control Optim. Calc. Var., 20 (2014), 924-956.  doi: 10.1051/cocv/2014002.  Google Scholar

[6]

V. Barbu, Boundary stabilization of equilibrium solutions to parabolic equations, IEEE Trans. Automat. Control, 58 (2013), 2416-2420.  doi: 10.1109/TAC.2013.2254013.  Google Scholar

[7]

V. Barbu and I. Lasiecka, The unique continuation property of eigenfunctions to Stokes-Oseen operator is generic with respect to the coefficients, Nonlinear Anal., 75 (2012), 4384-4397.  doi: 10.1016/j.na.2011.07.056.  Google Scholar

[8]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.  doi: 10.1512/iumj.2004.53.2445.  Google Scholar

[9]

N. Bekiaris-Liberis and M. Krstic, Nonlinear Control under Nonconstant Delays, volume 25 of Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013. doi: 10.1137/1.9781611972856.  Google Scholar

[10]

N. Bekiaris-Liberis and M. Krstic, Predictor-feedback stabilization of multi-input nonlinear systems, IEEE Trans. Automat. Control, 62 (2017), 516-531.  doi: 10.1109/TAC.2016.2558293.  Google Scholar

[11]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, second edition, 2007. doi: 10.1007/978-0-8176-4581-6.  Google Scholar

[12]

D. Bresch-Pietri and M. Krstic, Delay-adaptive control for nonlinear systems, IEEE Trans. Automat. Control, 59 (2014), 1203-1218.  doi: 10.1109/TAC.2014.2298711.  Google Scholar

[13]

D. Bresch-Pietri and M. Krstic, Output-feedback adaptive control of a wave PDE with boundary anti-damping, Automatica J. IFAC, 50 (2014), 1407-1415.  doi: 10.1016/j.automatica.2014.02.040.  Google Scholar

[14]

D. Bresch-PietriC. Prieur and E. Trélat, New formulation of predictors for finite-dimensional linear control systems with input delay, Systems Control Lett., 113 (2018), 9-16.  doi: 10.1016/j.sysconle.2017.12.007.  Google Scholar

[15]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.  Google Scholar

[16]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[17]

L. C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998.  Google Scholar

[18]

C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes, Comm. Partial Differential Equations, 21 (1996), 573-596.  doi: 10.1080/03605309608821198.  Google Scholar

[19]

H. O. Fattorini, Some remarks on complete controllability, SIAM J. Control, 4 (1966), 686-694.  doi: 10.1137/0304048.  Google Scholar

[20]

M. L. J. Hautus, Controllability and observability conditions of linear autonomous systems, Nederl. Akad. Wetensch. Proc. Ser., 72 (1969), 443-448.   Google Scholar

[21]

L. Hörmander, Linear Partial Differential Operators, Springer Verlag, Berlin-New York, 1976.  Google Scholar

[22]

T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132. Springer-Verlag New York, Inc., New York, 1966.  Google Scholar

[23]

M. Krstic, Control of an unstable reaction-diffusion PDE with long input delay, Systems Control Lett., 58 (2009), 773-782.  doi: 10.1016/j.sysconle.2009.08.006.  Google Scholar

[24]

K. Kunisch and S. S. Rodrigues, Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 67, 38 pp. doi: 10.1051/cocv/2018054.  Google Scholar

[25]

H. Lhachemi and C. Prieur, Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control, IEEE Trans. Automat. Control, 66 (2021), 105-120.  doi: 10.1109/TAC.2020.2975003.  Google Scholar

[26]

H. Lhachemi and R. Shorten, Boundary input-to-state stabilization of a damped Euler-Bernoulli beam in the presence of a state-delay, https://arXiv.org/pdf/1912.01117.pdf, 2019. Google Scholar

[27]

H. Lhachemi, R. Shorten and C. Prieur, Exponential input-to-state stabilization of a class of diagonal boundary control systems with delay boundary control, Systems Control Lett., 138 (2020), 104651, 10 pp. doi: 10.1016/j.sysconle.2020.104651.  Google Scholar

[28]

A. Z. Manitius and A. W. Olbrot, Finite spectrum assignment problem for systems with delays, IEEE Trans. Automat. Control, 24 (1979), 541-553.  doi: 10.1109/TAC.1979.1102124.  Google Scholar

[29]

M. T. Nihtilä, Input delay systems: Adaptive control and lumped approximations, In Mathematics of the Analysis and Design of Process Control (Dublin, 1991/Lille, 1991), 503–512. North-Holland, Amsterdam, 1992.  Google Scholar

[30]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[31]

C. Prieur and E. Trélat, Feedback stabilization of a 1-D linear reaction-diffusion equation with delay boundary control, IEEE Trans. Automat. Control, 64 (2019), 1415-1425.  doi: 10.1109/TAC.2018.2849560.  Google Scholar

[32]

J.-P. Raymond, Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1537-1564.  doi: 10.3934/dcdsb.2010.14.1537.  Google Scholar

[33]

J.-P. Raymond, Stabilizability of infinite-dimensional systems by finite-dimensional controls, Comput. Methods Appl. Math., 19 (2019), 797-811.  doi: 10.1515/cmam-2018-0031.  Google Scholar

[34]

J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers, Discrete Contin. Dyn. Syst., 27 (2010), 1159-1187.  doi: 10.3934/dcds.2010.27.1159.  Google Scholar

[35]

R. Temam, Navier-Stokes Equations, volume 2 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, revised edition, 1979. Theory and numerical analysis, With an appendix by F. Thomasset.  Google Scholar

[36]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, volume 18 of North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

[37]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[38]

K. Yosida, Lectures on Differential and Integral Equations, Pure and Applied Mathematics, Vol. X. Interscience Publishers, New York-London, 1960.  Google Scholar

show all references

References:
[1]

C. Abdallah, P. Dorato, J. Benitez-Read and R. Byrne, Delayed positive feedback can stabilize oscillatory systems, In 1993 American Control Conference, IEEE, (1993), 3106–3107. Google Scholar

[2]

Z. Artstein, Linear systems with delayed controls: A reduction, IEEE Trans. Automat. Control, 27 (1982), 869-879.  doi: 10.1109/TAC.1982.1103023.  Google Scholar

[3]

A. Azouani and E. S. Titi, Feedback control of nonlinear dissipative systems by finite determining parameters—a reaction-diffusion paradigm, Evol. Equ. Control Theory, 3 (2014), 579-594.  doi: 10.3934/eect.2014.3.579.  Google Scholar

[4]

M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: Application to the Navier-Stokes system, SIAM J. Control Optim., 49 (2011), 420-463.  doi: 10.1137/090778146.  Google Scholar

[5]

M. Badra and T. Takahashi, On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems, ESAIM Control Optim. Calc. Var., 20 (2014), 924-956.  doi: 10.1051/cocv/2014002.  Google Scholar

[6]

V. Barbu, Boundary stabilization of equilibrium solutions to parabolic equations, IEEE Trans. Automat. Control, 58 (2013), 2416-2420.  doi: 10.1109/TAC.2013.2254013.  Google Scholar

[7]

V. Barbu and I. Lasiecka, The unique continuation property of eigenfunctions to Stokes-Oseen operator is generic with respect to the coefficients, Nonlinear Anal., 75 (2012), 4384-4397.  doi: 10.1016/j.na.2011.07.056.  Google Scholar

[8]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.  doi: 10.1512/iumj.2004.53.2445.  Google Scholar

[9]

N. Bekiaris-Liberis and M. Krstic, Nonlinear Control under Nonconstant Delays, volume 25 of Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013. doi: 10.1137/1.9781611972856.  Google Scholar

[10]

N. Bekiaris-Liberis and M. Krstic, Predictor-feedback stabilization of multi-input nonlinear systems, IEEE Trans. Automat. Control, 62 (2017), 516-531.  doi: 10.1109/TAC.2016.2558293.  Google Scholar

[11]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, second edition, 2007. doi: 10.1007/978-0-8176-4581-6.  Google Scholar

[12]

D. Bresch-Pietri and M. Krstic, Delay-adaptive control for nonlinear systems, IEEE Trans. Automat. Control, 59 (2014), 1203-1218.  doi: 10.1109/TAC.2014.2298711.  Google Scholar

[13]

D. Bresch-Pietri and M. Krstic, Output-feedback adaptive control of a wave PDE with boundary anti-damping, Automatica J. IFAC, 50 (2014), 1407-1415.  doi: 10.1016/j.automatica.2014.02.040.  Google Scholar

[14]

D. Bresch-PietriC. Prieur and E. Trélat, New formulation of predictors for finite-dimensional linear control systems with input delay, Systems Control Lett., 113 (2018), 9-16.  doi: 10.1016/j.sysconle.2017.12.007.  Google Scholar

[15]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.  Google Scholar

[16]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[17]

L. C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998.  Google Scholar

[18]

C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes, Comm. Partial Differential Equations, 21 (1996), 573-596.  doi: 10.1080/03605309608821198.  Google Scholar

[19]

H. O. Fattorini, Some remarks on complete controllability, SIAM J. Control, 4 (1966), 686-694.  doi: 10.1137/0304048.  Google Scholar

[20]

M. L. J. Hautus, Controllability and observability conditions of linear autonomous systems, Nederl. Akad. Wetensch. Proc. Ser., 72 (1969), 443-448.   Google Scholar

[21]

L. Hörmander, Linear Partial Differential Operators, Springer Verlag, Berlin-New York, 1976.  Google Scholar

[22]

T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132. Springer-Verlag New York, Inc., New York, 1966.  Google Scholar

[23]

M. Krstic, Control of an unstable reaction-diffusion PDE with long input delay, Systems Control Lett., 58 (2009), 773-782.  doi: 10.1016/j.sysconle.2009.08.006.  Google Scholar

[24]

K. Kunisch and S. S. Rodrigues, Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 67, 38 pp. doi: 10.1051/cocv/2018054.  Google Scholar

[25]

H. Lhachemi and C. Prieur, Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control, IEEE Trans. Automat. Control, 66 (2021), 105-120.  doi: 10.1109/TAC.2020.2975003.  Google Scholar

[26]

H. Lhachemi and R. Shorten, Boundary input-to-state stabilization of a damped Euler-Bernoulli beam in the presence of a state-delay, https://arXiv.org/pdf/1912.01117.pdf, 2019. Google Scholar

[27]

H. Lhachemi, R. Shorten and C. Prieur, Exponential input-to-state stabilization of a class of diagonal boundary control systems with delay boundary control, Systems Control Lett., 138 (2020), 104651, 10 pp. doi: 10.1016/j.sysconle.2020.104651.  Google Scholar

[28]

A. Z. Manitius and A. W. Olbrot, Finite spectrum assignment problem for systems with delays, IEEE Trans. Automat. Control, 24 (1979), 541-553.  doi: 10.1109/TAC.1979.1102124.  Google Scholar

[29]

M. T. Nihtilä, Input delay systems: Adaptive control and lumped approximations, In Mathematics of the Analysis and Design of Process Control (Dublin, 1991/Lille, 1991), 503–512. North-Holland, Amsterdam, 1992.  Google Scholar

[30]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[31]

C. Prieur and E. Trélat, Feedback stabilization of a 1-D linear reaction-diffusion equation with delay boundary control, IEEE Trans. Automat. Control, 64 (2019), 1415-1425.  doi: 10.1109/TAC.2018.2849560.  Google Scholar

[32]

J.-P. Raymond, Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1537-1564.  doi: 10.3934/dcdsb.2010.14.1537.  Google Scholar

[33]

J.-P. Raymond, Stabilizability of infinite-dimensional systems by finite-dimensional controls, Comput. Methods Appl. Math., 19 (2019), 797-811.  doi: 10.1515/cmam-2018-0031.  Google Scholar

[34]

J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers, Discrete Contin. Dyn. Syst., 27 (2010), 1159-1187.  doi: 10.3934/dcds.2010.27.1159.  Google Scholar

[35]

R. Temam, Navier-Stokes Equations, volume 2 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, revised edition, 1979. Theory and numerical analysis, With an appendix by F. Thomasset.  Google Scholar

[36]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, volume 18 of North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

[37]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[38]

K. Yosida, Lectures on Differential and Integral Equations, Pure and Applied Mathematics, Vol. X. Interscience Publishers, New York-London, 1960.  Google Scholar

[1]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[2]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042

[3]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[4]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[5]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[6]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[7]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[8]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408

[9]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[10]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[11]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[12]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[13]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[14]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[15]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021036

[16]

Iman Malmir. Caputo fractional derivative operational matrices of legendre and chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021013

[17]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[18]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[19]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[20]

Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2021031

2019 Impact Factor: 0.857

Article outline

[Back to Top]