In this paper we study the local well-posedness for the Cauchy problem associated with a special class of one-dimensional Boussinesq systems that model the evolution of long water waves with small amplitude in the presence of surface tension.
Citation: |
[1] |
B. Alvarez-Samaniego and X. Carvajal, On the local well-posedness for some systems of coupled KdV equations, Nonlinear Analysis, 69 (2008), 692-715.
doi: 10.1016/j.na.2007.06.009.![]() ![]() ![]() |
[2] |
D. Bekiranov, T. Ogawa and G. Ponce, Interaction equations for short and long dispersive waves, J. Funct. Anal., 158 (1998), 357-388.
doi: 10.1006/jfan.1998.3257.![]() ![]() ![]() |
[3] |
J. Bona, M. Chen and J. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media Ⅰ: Derivation and linear theory, J. Nonlinear Sci., 12 (2002), 283-318.
doi: 10.1007/s00332-002-0466-4.![]() ![]() ![]() |
[4] |
J. Bona, M. Chen and J. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media Ⅱ: The nonlinear theory, Nonlinearity, 17 (2004), 925-952.
doi: 10.1088/0951-7715/17/3/010.![]() ![]() ![]() |
[5] |
J. Bona, Z. Grujić and H. Kalisch, A KdV-type Boussinesq system: From the energy level to analytic spaces, Discret. Contin. Dyn. Syst., 26 (2010), 1121-1139.
doi: 10.3934/dcds.2010.26.1121.![]() ![]() ![]() |
[6] |
J. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equations, Discret. Contin. Dyn. Syst., 23 (2009), 1241-1252.
doi: 10.3934/dcds.2009.23.1241.![]() ![]() ![]() |
[7] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Ⅰ, Geom. Funct. Anal., 3 (1993), 107-156.
doi: 10.1007/BF01896020.![]() ![]() ![]() |
[8] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Ⅱ, Geom. Funct. Anal., 3 (1993), 209-262.
doi: 10.1007/BF01895688.![]() ![]() ![]() |
[9] |
J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal., 3 (1993), 315-341.
doi: 10.1007/BF01896259.![]() ![]() ![]() |
[10] |
T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.
doi: 10.1007/BF01403504.![]() ![]() ![]() |
[11] |
E. Compaan and N. Tzirakis, Well-posedness and nonlinear smoothing for the "good" Boussinesq equation on the half-line, J. Differential Equations, 262 (2017), 5824-5859.
doi: 10.1016/j.jde.2017.02.016.![]() ![]() ![]() |
[12] |
A. Esfahani and L. Farah, Local well-posedness for the sixth-order Boussinesq equation, J. Math. Anal. Appl., 385 (2012), 230-242.
doi: 10.1016/j.jmaa.2011.06.038.![]() ![]() ![]() |
[13] |
L. Farah, Local solutions in Sobolev spaces with negative indices for the "good" Boussinesq equation, Comm. Partial Differential Equations, 34 (2009), 52-73.
doi: 10.1080/03605300802682283.![]() ![]() ![]() |
[14] |
J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.
doi: 10.1006/jfan.1997.3148.![]() ![]() ![]() |
[15] |
S. Li, M. Chen and B. Zhang, Low regularity solutions of non-homogeneous boundary value problems of a higher order Boussinesq equation in a quarter plane, J. Math. Anal. App., 492 (2020), 124406, 1–35.
doi: 10.1016/j.jmaa.2020.124406.![]() ![]() ![]() |
[16] |
C. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.
doi: 10.1090/S0894-0347-1991-1086966-0.![]() ![]() ![]() |
[17] |
C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405.![]() ![]() ![]() |
[18] |
C. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21.
doi: 10.1215/S0012-7094-93-07101-3.![]() ![]() ![]() |
[19] |
C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7.![]() ![]() ![]() |
[20] |
C. Kenig, G. Ponce and L. Vega, Quadratic forms for the 1-D semilinear Schrödinger equation, Trans. Amer. Math. Soc., 348 (1996), 3323-3353.
doi: 10.1090/S0002-9947-96-01645-5.![]() ![]() ![]() |
[21] |
F. Linares, $L^{2}$ global well-posedness of the initial value problem associated to the Benjamin equation, J. Differential Equations, 152 (1999), 377-393.
doi: 10.1006/jdeq.1998.3530.![]() ![]() ![]() |
[22] |
J. Quintero, Solitary water waves for a 2D Boussinesq type system, J. Partial Differ. Equ., 23 (2010), 251-280.
![]() ![]() |
[23] |
J. Quintero and A. Montes, Existence, physical sense and analyticity of solitons for a 2D Boussinesq-Benney-Luke system, Dyn. Partial Differ. Equ., 10 (2013), 313-342.
doi: 10.4310/DPDE.2013.v10.n4.a1.![]() ![]() ![]() |
[24] |
J. Quintero and A. Montes, On the Cauchy and solitons for a class of 1D Boussinesq systems, Differ. Equ. Dyn. Syst., 24 (2016), 367-389.
doi: 10.1007/s12591-015-0264-8.![]() ![]() ![]() |
[25] |
J. Quintero and A. Montes, Periodic solutions for a class of one-dimensional Boussinesq systems, Dyn. Partial Differ. Equ., 13 (2016), 241-261.
doi: 10.4310/DPDE.2016.v13.n3.a3.![]() ![]() ![]() |
[26] |
J. Quintero, A. Montes and R. Córdoba, On the stability of a Boussinesq system, work in progress.
![]() |
[27] |
X. Yang and B. Zhang, Local well-posedness of the coupled KdV-KdV systems on $\mathbb R$, preprint, 2020, arXiv: 1812.08261v2.
![]() |