• Previous Article
    A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide
  • MCRF Home
  • This Issue
  • Next Article
    Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential
doi: 10.3934/mcrf.2021030

Local well-posedness for a class of 1D Boussinesq systems

1. 

Mathematics Department, Universidad del Cauca, Popayán, Cauca, Colombia

* Corresponding author: Alex M. Montes

Received  October 2020 Revised  March 2021 Published  May 2021

Fund Project: A. Montes and R. Córdoba were supported by Universidad del Cauca

In this paper we study the local well-posedness for the Cauchy problem associated with a special class of one-dimensional Boussinesq systems that model the evolution of long water waves with small amplitude in the presence of surface tension.

Citation: Alex M. Montes, Ricardo Córdoba. Local well-posedness for a class of 1D Boussinesq systems. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021030
References:
[1]

B. Alvarez-Samaniego and X. Carvajal, On the local well-posedness for some systems of coupled KdV equations, Nonlinear Analysis, 69 (2008), 692-715.  doi: 10.1016/j.na.2007.06.009.  Google Scholar

[2]

D. BekiranovT. Ogawa and G. Ponce, Interaction equations for short and long dispersive waves, J. Funct. Anal., 158 (1998), 357-388.  doi: 10.1006/jfan.1998.3257.  Google Scholar

[3]

J. BonaM. Chen and J. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media Ⅰ: Derivation and linear theory, J. Nonlinear Sci., 12 (2002), 283-318.  doi: 10.1007/s00332-002-0466-4.  Google Scholar

[4]

J. BonaM. Chen and J. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media Ⅱ: The nonlinear theory, Nonlinearity, 17 (2004), 925-952.  doi: 10.1088/0951-7715/17/3/010.  Google Scholar

[5]

J. BonaZ. Grujić and H. Kalisch, A KdV-type Boussinesq system: From the energy level to analytic spaces, Discret. Contin. Dyn. Syst., 26 (2010), 1121-1139.  doi: 10.3934/dcds.2010.26.1121.  Google Scholar

[6]

J. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equations, Discret. Contin. Dyn. Syst., 23 (2009), 1241-1252.  doi: 10.3934/dcds.2009.23.1241.  Google Scholar

[7]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Ⅰ, Geom. Funct. Anal., 3 (1993), 107-156.  doi: 10.1007/BF01896020.  Google Scholar

[8]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Ⅱ, Geom. Funct. Anal., 3 (1993), 209-262.  doi: 10.1007/BF01895688.  Google Scholar

[9]

J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal., 3 (1993), 315-341.  doi: 10.1007/BF01896259.  Google Scholar

[10]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[11]

E. Compaan and N. Tzirakis, Well-posedness and nonlinear smoothing for the "good" Boussinesq equation on the half-line, J. Differential Equations, 262 (2017), 5824-5859.  doi: 10.1016/j.jde.2017.02.016.  Google Scholar

[12]

A. Esfahani and L. Farah, Local well-posedness for the sixth-order Boussinesq equation, J. Math. Anal. Appl., 385 (2012), 230-242.  doi: 10.1016/j.jmaa.2011.06.038.  Google Scholar

[13]

L. Farah, Local solutions in Sobolev spaces with negative indices for the "good" Boussinesq equation, Comm. Partial Differential Equations, 34 (2009), 52-73.  doi: 10.1080/03605300802682283.  Google Scholar

[14]

J. GinibreY. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.  doi: 10.1006/jfan.1997.3148.  Google Scholar

[15]

S. Li, M. Chen and B. Zhang, Low regularity solutions of non-homogeneous boundary value problems of a higher order Boussinesq equation in a quarter plane, J. Math. Anal. App., 492 (2020), 124406, 1–35. doi: 10.1016/j.jmaa.2020.124406.  Google Scholar

[16]

C. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.  doi: 10.1090/S0894-0347-1991-1086966-0.  Google Scholar

[17]

C. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[18]

C. KenigG. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21.  doi: 10.1215/S0012-7094-93-07101-3.  Google Scholar

[19]

C. KenigG. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.  doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[20]

C. KenigG. Ponce and L. Vega, Quadratic forms for the 1-D semilinear Schrödinger equation, Trans. Amer. Math. Soc., 348 (1996), 3323-3353.  doi: 10.1090/S0002-9947-96-01645-5.  Google Scholar

[21]

F. Linares, $L^{2}$ global well-posedness of the initial value problem associated to the Benjamin equation, J. Differential Equations, 152 (1999), 377-393.  doi: 10.1006/jdeq.1998.3530.  Google Scholar

[22]

J. Quintero, Solitary water waves for a 2D Boussinesq type system, J. Partial Differ. Equ., 23 (2010), 251-280.   Google Scholar

[23]

J. Quintero and A. Montes, Existence, physical sense and analyticity of solitons for a 2D Boussinesq-Benney-Luke system, Dyn. Partial Differ. Equ., 10 (2013), 313-342.  doi: 10.4310/DPDE.2013.v10.n4.a1.  Google Scholar

[24]

J. Quintero and A. Montes, On the Cauchy and solitons for a class of 1D Boussinesq systems, Differ. Equ. Dyn. Syst., 24 (2016), 367-389.  doi: 10.1007/s12591-015-0264-8.  Google Scholar

[25]

J. Quintero and A. Montes, Periodic solutions for a class of one-dimensional Boussinesq systems, Dyn. Partial Differ. Equ., 13 (2016), 241-261.  doi: 10.4310/DPDE.2016.v13.n3.a3.  Google Scholar

[26]

J. Quintero, A. Montes and R. Córdoba, On the stability of a Boussinesq system, work in progress. Google Scholar

[27]

X. Yang and B. Zhang, Local well-posedness of the coupled KdV-KdV systems on $\mathbb R$, preprint, 2020, arXiv: 1812.08261v2. Google Scholar

show all references

References:
[1]

B. Alvarez-Samaniego and X. Carvajal, On the local well-posedness for some systems of coupled KdV equations, Nonlinear Analysis, 69 (2008), 692-715.  doi: 10.1016/j.na.2007.06.009.  Google Scholar

[2]

D. BekiranovT. Ogawa and G. Ponce, Interaction equations for short and long dispersive waves, J. Funct. Anal., 158 (1998), 357-388.  doi: 10.1006/jfan.1998.3257.  Google Scholar

[3]

J. BonaM. Chen and J. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media Ⅰ: Derivation and linear theory, J. Nonlinear Sci., 12 (2002), 283-318.  doi: 10.1007/s00332-002-0466-4.  Google Scholar

[4]

J. BonaM. Chen and J. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media Ⅱ: The nonlinear theory, Nonlinearity, 17 (2004), 925-952.  doi: 10.1088/0951-7715/17/3/010.  Google Scholar

[5]

J. BonaZ. Grujić and H. Kalisch, A KdV-type Boussinesq system: From the energy level to analytic spaces, Discret. Contin. Dyn. Syst., 26 (2010), 1121-1139.  doi: 10.3934/dcds.2010.26.1121.  Google Scholar

[6]

J. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equations, Discret. Contin. Dyn. Syst., 23 (2009), 1241-1252.  doi: 10.3934/dcds.2009.23.1241.  Google Scholar

[7]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Ⅰ, Geom. Funct. Anal., 3 (1993), 107-156.  doi: 10.1007/BF01896020.  Google Scholar

[8]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Ⅱ, Geom. Funct. Anal., 3 (1993), 209-262.  doi: 10.1007/BF01895688.  Google Scholar

[9]

J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal., 3 (1993), 315-341.  doi: 10.1007/BF01896259.  Google Scholar

[10]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[11]

E. Compaan and N. Tzirakis, Well-posedness and nonlinear smoothing for the "good" Boussinesq equation on the half-line, J. Differential Equations, 262 (2017), 5824-5859.  doi: 10.1016/j.jde.2017.02.016.  Google Scholar

[12]

A. Esfahani and L. Farah, Local well-posedness for the sixth-order Boussinesq equation, J. Math. Anal. Appl., 385 (2012), 230-242.  doi: 10.1016/j.jmaa.2011.06.038.  Google Scholar

[13]

L. Farah, Local solutions in Sobolev spaces with negative indices for the "good" Boussinesq equation, Comm. Partial Differential Equations, 34 (2009), 52-73.  doi: 10.1080/03605300802682283.  Google Scholar

[14]

J. GinibreY. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.  doi: 10.1006/jfan.1997.3148.  Google Scholar

[15]

S. Li, M. Chen and B. Zhang, Low regularity solutions of non-homogeneous boundary value problems of a higher order Boussinesq equation in a quarter plane, J. Math. Anal. App., 492 (2020), 124406, 1–35. doi: 10.1016/j.jmaa.2020.124406.  Google Scholar

[16]

C. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.  doi: 10.1090/S0894-0347-1991-1086966-0.  Google Scholar

[17]

C. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[18]

C. KenigG. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21.  doi: 10.1215/S0012-7094-93-07101-3.  Google Scholar

[19]

C. KenigG. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.  doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[20]

C. KenigG. Ponce and L. Vega, Quadratic forms for the 1-D semilinear Schrödinger equation, Trans. Amer. Math. Soc., 348 (1996), 3323-3353.  doi: 10.1090/S0002-9947-96-01645-5.  Google Scholar

[21]

F. Linares, $L^{2}$ global well-posedness of the initial value problem associated to the Benjamin equation, J. Differential Equations, 152 (1999), 377-393.  doi: 10.1006/jdeq.1998.3530.  Google Scholar

[22]

J. Quintero, Solitary water waves for a 2D Boussinesq type system, J. Partial Differ. Equ., 23 (2010), 251-280.   Google Scholar

[23]

J. Quintero and A. Montes, Existence, physical sense and analyticity of solitons for a 2D Boussinesq-Benney-Luke system, Dyn. Partial Differ. Equ., 10 (2013), 313-342.  doi: 10.4310/DPDE.2013.v10.n4.a1.  Google Scholar

[24]

J. Quintero and A. Montes, On the Cauchy and solitons for a class of 1D Boussinesq systems, Differ. Equ. Dyn. Syst., 24 (2016), 367-389.  doi: 10.1007/s12591-015-0264-8.  Google Scholar

[25]

J. Quintero and A. Montes, Periodic solutions for a class of one-dimensional Boussinesq systems, Dyn. Partial Differ. Equ., 13 (2016), 241-261.  doi: 10.4310/DPDE.2016.v13.n3.a3.  Google Scholar

[26]

J. Quintero, A. Montes and R. Córdoba, On the stability of a Boussinesq system, work in progress. Google Scholar

[27]

X. Yang and B. Zhang, Local well-posedness of the coupled KdV-KdV systems on $\mathbb R$, preprint, 2020, arXiv: 1812.08261v2. Google Scholar

[1]

Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521

[2]

Adalet Hanachi, Haroune Houamed, Mohamed Zerguine. On the global well-posedness of the axisymmetric viscous Boussinesq system in critical Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6473-6506. doi: 10.3934/dcds.2020287

[3]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[4]

Hartmut Pecher. Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3303-3321. doi: 10.3934/cpaa.2020146

[5]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[6]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[7]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[8]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[9]

Saoussen Sokrani. On the global well-posedness of 3-D Boussinesq system with partial viscosity and axisymmetric data. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 1613-1650. doi: 10.3934/dcds.2019072

[10]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[11]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[12]

Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605

[13]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[14]

Fabio S. Bemfica, Marcelo M. Disconzi, P. Jameson Graber. Local well-posedness in Sobolev spaces for first-order barotropic causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021068

[15]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[16]

Borys Alvarez-Samaniego, Pascal Azerad. Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 671-692. doi: 10.3934/dcdsb.2009.12.671

[17]

Hartmut Pecher. Local well-posedness for the Klein-Gordon-Zakharov system in 3D. Discrete & Continuous Dynamical Systems, 2021, 41 (4) : 1707-1736. doi: 10.3934/dcds.2020338

[18]

Sirui Li, Wei Wang, Pingwen Zhang. Local well-posedness and small Deborah limit of a molecule-based $Q$-tensor system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2611-2655. doi: 10.3934/dcdsb.2015.20.2611

[19]

Jingjing Zhang, Ting Zhang. Local well-posedness of perturbed Navier-Stokes system around Landau solutions. Electronic Research Archive, , () : -. doi: 10.3934/era.2021010

[20]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (22)
  • HTML views (45)
  • Cited by (0)

Other articles
by authors

[Back to Top]