• Previous Article
    A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide
  • MCRF Home
  • This Issue
  • Next Article
    Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential
doi: 10.3934/mcrf.2021030
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Local well-posedness for a class of 1D Boussinesq systems

1. 

Mathematics Department, Universidad del Cauca, Popayán, Cauca, Colombia

* Corresponding author: Alex M. Montes

Received  October 2020 Revised  March 2021 Early access May 2021

Fund Project: A. Montes and R. Córdoba were supported by Universidad del Cauca

In this paper we study the local well-posedness for the Cauchy problem associated with a special class of one-dimensional Boussinesq systems that model the evolution of long water waves with small amplitude in the presence of surface tension.

Citation: Alex M. Montes, Ricardo Córdoba. Local well-posedness for a class of 1D Boussinesq systems. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021030
References:
[1]

B. Alvarez-Samaniego and X. Carvajal, On the local well-posedness for some systems of coupled KdV equations, Nonlinear Analysis, 69 (2008), 692-715.  doi: 10.1016/j.na.2007.06.009.  Google Scholar

[2]

D. BekiranovT. Ogawa and G. Ponce, Interaction equations for short and long dispersive waves, J. Funct. Anal., 158 (1998), 357-388.  doi: 10.1006/jfan.1998.3257.  Google Scholar

[3]

J. BonaM. Chen and J. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media Ⅰ: Derivation and linear theory, J. Nonlinear Sci., 12 (2002), 283-318.  doi: 10.1007/s00332-002-0466-4.  Google Scholar

[4]

J. BonaM. Chen and J. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media Ⅱ: The nonlinear theory, Nonlinearity, 17 (2004), 925-952.  doi: 10.1088/0951-7715/17/3/010.  Google Scholar

[5]

J. BonaZ. Grujić and H. Kalisch, A KdV-type Boussinesq system: From the energy level to analytic spaces, Discret. Contin. Dyn. Syst., 26 (2010), 1121-1139.  doi: 10.3934/dcds.2010.26.1121.  Google Scholar

[6]

J. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equations, Discret. Contin. Dyn. Syst., 23 (2009), 1241-1252.  doi: 10.3934/dcds.2009.23.1241.  Google Scholar

[7]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Ⅰ, Geom. Funct. Anal., 3 (1993), 107-156.  doi: 10.1007/BF01896020.  Google Scholar

[8]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Ⅱ, Geom. Funct. Anal., 3 (1993), 209-262.  doi: 10.1007/BF01895688.  Google Scholar

[9]

J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal., 3 (1993), 315-341.  doi: 10.1007/BF01896259.  Google Scholar

[10]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[11]

E. Compaan and N. Tzirakis, Well-posedness and nonlinear smoothing for the "good" Boussinesq equation on the half-line, J. Differential Equations, 262 (2017), 5824-5859.  doi: 10.1016/j.jde.2017.02.016.  Google Scholar

[12]

A. Esfahani and L. Farah, Local well-posedness for the sixth-order Boussinesq equation, J. Math. Anal. Appl., 385 (2012), 230-242.  doi: 10.1016/j.jmaa.2011.06.038.  Google Scholar

[13]

L. Farah, Local solutions in Sobolev spaces with negative indices for the "good" Boussinesq equation, Comm. Partial Differential Equations, 34 (2009), 52-73.  doi: 10.1080/03605300802682283.  Google Scholar

[14]

J. GinibreY. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.  doi: 10.1006/jfan.1997.3148.  Google Scholar

[15]

S. Li, M. Chen and B. Zhang, Low regularity solutions of non-homogeneous boundary value problems of a higher order Boussinesq equation in a quarter plane, J. Math. Anal. App., 492 (2020), 124406, 1–35. doi: 10.1016/j.jmaa.2020.124406.  Google Scholar

[16]

C. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.  doi: 10.1090/S0894-0347-1991-1086966-0.  Google Scholar

[17]

C. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[18]

C. KenigG. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21.  doi: 10.1215/S0012-7094-93-07101-3.  Google Scholar

[19]

C. KenigG. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.  doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[20]

C. KenigG. Ponce and L. Vega, Quadratic forms for the 1-D semilinear Schrödinger equation, Trans. Amer. Math. Soc., 348 (1996), 3323-3353.  doi: 10.1090/S0002-9947-96-01645-5.  Google Scholar

[21]

F. Linares, $L^{2}$ global well-posedness of the initial value problem associated to the Benjamin equation, J. Differential Equations, 152 (1999), 377-393.  doi: 10.1006/jdeq.1998.3530.  Google Scholar

[22]

J. Quintero, Solitary water waves for a 2D Boussinesq type system, J. Partial Differ. Equ., 23 (2010), 251-280.   Google Scholar

[23]

J. Quintero and A. Montes, Existence, physical sense and analyticity of solitons for a 2D Boussinesq-Benney-Luke system, Dyn. Partial Differ. Equ., 10 (2013), 313-342.  doi: 10.4310/DPDE.2013.v10.n4.a1.  Google Scholar

[24]

J. Quintero and A. Montes, On the Cauchy and solitons for a class of 1D Boussinesq systems, Differ. Equ. Dyn. Syst., 24 (2016), 367-389.  doi: 10.1007/s12591-015-0264-8.  Google Scholar

[25]

J. Quintero and A. Montes, Periodic solutions for a class of one-dimensional Boussinesq systems, Dyn. Partial Differ. Equ., 13 (2016), 241-261.  doi: 10.4310/DPDE.2016.v13.n3.a3.  Google Scholar

[26]

J. Quintero, A. Montes and R. Córdoba, On the stability of a Boussinesq system, work in progress. Google Scholar

[27]

X. Yang and B. Zhang, Local well-posedness of the coupled KdV-KdV systems on $\mathbb R$, preprint, 2020, arXiv: 1812.08261v2. Google Scholar

show all references

References:
[1]

B. Alvarez-Samaniego and X. Carvajal, On the local well-posedness for some systems of coupled KdV equations, Nonlinear Analysis, 69 (2008), 692-715.  doi: 10.1016/j.na.2007.06.009.  Google Scholar

[2]

D. BekiranovT. Ogawa and G. Ponce, Interaction equations for short and long dispersive waves, J. Funct. Anal., 158 (1998), 357-388.  doi: 10.1006/jfan.1998.3257.  Google Scholar

[3]

J. BonaM. Chen and J. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media Ⅰ: Derivation and linear theory, J. Nonlinear Sci., 12 (2002), 283-318.  doi: 10.1007/s00332-002-0466-4.  Google Scholar

[4]

J. BonaM. Chen and J. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media Ⅱ: The nonlinear theory, Nonlinearity, 17 (2004), 925-952.  doi: 10.1088/0951-7715/17/3/010.  Google Scholar

[5]

J. BonaZ. Grujić and H. Kalisch, A KdV-type Boussinesq system: From the energy level to analytic spaces, Discret. Contin. Dyn. Syst., 26 (2010), 1121-1139.  doi: 10.3934/dcds.2010.26.1121.  Google Scholar

[6]

J. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equations, Discret. Contin. Dyn. Syst., 23 (2009), 1241-1252.  doi: 10.3934/dcds.2009.23.1241.  Google Scholar

[7]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Ⅰ, Geom. Funct. Anal., 3 (1993), 107-156.  doi: 10.1007/BF01896020.  Google Scholar

[8]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Ⅱ, Geom. Funct. Anal., 3 (1993), 209-262.  doi: 10.1007/BF01895688.  Google Scholar

[9]

J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal., 3 (1993), 315-341.  doi: 10.1007/BF01896259.  Google Scholar

[10]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[11]

E. Compaan and N. Tzirakis, Well-posedness and nonlinear smoothing for the "good" Boussinesq equation on the half-line, J. Differential Equations, 262 (2017), 5824-5859.  doi: 10.1016/j.jde.2017.02.016.  Google Scholar

[12]

A. Esfahani and L. Farah, Local well-posedness for the sixth-order Boussinesq equation, J. Math. Anal. Appl., 385 (2012), 230-242.  doi: 10.1016/j.jmaa.2011.06.038.  Google Scholar

[13]

L. Farah, Local solutions in Sobolev spaces with negative indices for the "good" Boussinesq equation, Comm. Partial Differential Equations, 34 (2009), 52-73.  doi: 10.1080/03605300802682283.  Google Scholar

[14]

J. GinibreY. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.  doi: 10.1006/jfan.1997.3148.  Google Scholar

[15]

S. Li, M. Chen and B. Zhang, Low regularity solutions of non-homogeneous boundary value problems of a higher order Boussinesq equation in a quarter plane, J. Math. Anal. App., 492 (2020), 124406, 1–35. doi: 10.1016/j.jmaa.2020.124406.  Google Scholar

[16]

C. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.  doi: 10.1090/S0894-0347-1991-1086966-0.  Google Scholar

[17]

C. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[18]

C. KenigG. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21.  doi: 10.1215/S0012-7094-93-07101-3.  Google Scholar

[19]

C. KenigG. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.  doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[20]

C. KenigG. Ponce and L. Vega, Quadratic forms for the 1-D semilinear Schrödinger equation, Trans. Amer. Math. Soc., 348 (1996), 3323-3353.  doi: 10.1090/S0002-9947-96-01645-5.  Google Scholar

[21]

F. Linares, $L^{2}$ global well-posedness of the initial value problem associated to the Benjamin equation, J. Differential Equations, 152 (1999), 377-393.  doi: 10.1006/jdeq.1998.3530.  Google Scholar

[22]

J. Quintero, Solitary water waves for a 2D Boussinesq type system, J. Partial Differ. Equ., 23 (2010), 251-280.   Google Scholar

[23]

J. Quintero and A. Montes, Existence, physical sense and analyticity of solitons for a 2D Boussinesq-Benney-Luke system, Dyn. Partial Differ. Equ., 10 (2013), 313-342.  doi: 10.4310/DPDE.2013.v10.n4.a1.  Google Scholar

[24]

J. Quintero and A. Montes, On the Cauchy and solitons for a class of 1D Boussinesq systems, Differ. Equ. Dyn. Syst., 24 (2016), 367-389.  doi: 10.1007/s12591-015-0264-8.  Google Scholar

[25]

J. Quintero and A. Montes, Periodic solutions for a class of one-dimensional Boussinesq systems, Dyn. Partial Differ. Equ., 13 (2016), 241-261.  doi: 10.4310/DPDE.2016.v13.n3.a3.  Google Scholar

[26]

J. Quintero, A. Montes and R. Córdoba, On the stability of a Boussinesq system, work in progress. Google Scholar

[27]

X. Yang and B. Zhang, Local well-posedness of the coupled KdV-KdV systems on $\mathbb R$, preprint, 2020, arXiv: 1812.08261v2. Google Scholar

[1]

Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521

[2]

Adalet Hanachi, Haroune Houamed, Mohamed Zerguine. On the global well-posedness of the axisymmetric viscous Boussinesq system in critical Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6473-6506. doi: 10.3934/dcds.2020287

[3]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[4]

Hartmut Pecher. Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3303-3321. doi: 10.3934/cpaa.2020146

[5]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[6]

Akansha Sanwal. Local well-posedness for the Zakharov system in dimension d ≤ 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021147

[7]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[8]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[9]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[10]

Saoussen Sokrani. On the global well-posedness of 3-D Boussinesq system with partial viscosity and axisymmetric data. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 1613-1650. doi: 10.3934/dcds.2019072

[11]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[12]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[13]

Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605

[14]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[15]

Fabio S. Bemfica, Marcelo M. Disconzi, P. Jameson Graber. Local well-posedness in Sobolev spaces for first-order barotropic causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, 2021, 20 (9) : 2885-2914. doi: 10.3934/cpaa.2021068

[16]

Michael S. Jolly, Anuj Kumar, Vincent R. Martinez. On local well-posedness of logarithmic inviscid regularizations of generalized SQG equations in borderline Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021169

[17]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[18]

Borys Alvarez-Samaniego, Pascal Azerad. Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 671-692. doi: 10.3934/dcdsb.2009.12.671

[19]

Hartmut Pecher. Local well-posedness for the Klein-Gordon-Zakharov system in 3D. Discrete & Continuous Dynamical Systems, 2021, 41 (4) : 1707-1736. doi: 10.3934/dcds.2020338

[20]

Sirui Li, Wei Wang, Pingwen Zhang. Local well-posedness and small Deborah limit of a molecule-based $Q$-tensor system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2611-2655. doi: 10.3934/dcdsb.2015.20.2611

2020 Impact Factor: 1.284

Article outline

[Back to Top]