This paper studies the inverse optimal control using Legendre-Fenchel (in short, LF) translation method for regime-switching jump diffusions. Our approach is to first design inverse pre-optimal stabilization controllers and then obtain inverse optimal stabilizers, which avoids solving a Hamilton-Jacobi-Bellman equation. Finally, an application to stochastic Hamiltonian systems with Markov regime-switching is studied in detail for illustration.
Citation: |
[1] |
D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, 116. Cambridge University Press, Cambridge, 2009.
doi: 10.1017/CBO9780511809781.![]() ![]() ![]() |
[2] |
D. Applebaum and M. Siakalli, Asymptotic stability of stochastic differential equations driven by Lévy noise, J. Appl. Probab., 46 (2009), 1116-1129.
doi: 10.1239/jap/1261670692.![]() ![]() ![]() |
[3] |
J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 391 (2012), 363-375.
doi: 10.1016/j.jmaa.2012.02.043.![]() ![]() ![]() |
[4] |
J. Bao and J. Shao, Permance and extinction of regime-switching predator-prey models, SIAM J. Math. Anal., 48 (2016), 725-739.
doi: 10.1137/15M1024512.![]() ![]() ![]() |
[5] |
Z. Chao, K. Wang, C. Zhu and Y. Zhu, Almost sure and moment exponential stability of regime-switching jump diffusions, SIAM J. Control Optim., 55 (2017), 3458-3488.
doi: 10.1137/16M1082470.![]() ![]() |
[6] |
H. Deng and M. Krstic, Stochastic nonlinear stabilization Ⅰ: A backstepping design, Systems Control Lett., 32 (1997), 143-150.
doi: 10.1016/S0167-6911(97)00068-6.![]() ![]() |
[7] |
H. Deng and M. Krstić, Stochastic nonlinear stabilization-Ⅱ: Inverse optimality, Systems Control Lett., 32 (1997), 151-159.
doi: 10.1016/S0167-6911(97)00067-4.![]() ![]() ![]() |
[8] |
K. D. Do, Global inverse optimal stabilization of stochastic nonholonomic systems, Systems Control Lett., 75 (2015), 41-55.
doi: 10.1016/j.sysconle.2014.11.003.![]() ![]() ![]() |
[9] |
K. D. Do, Inverse optimal control of stochastic systems driven by Lévy processes, Automatica, 107 (2019), 539-550.
doi: 10.1016/j.automatica.2019.06.016.![]() ![]() ![]() |
[10] |
R. A. Freeman and P. V. Kokotovic, Inverse optimality in robust stabilization, SIAM J. Control Optim., 34 (1996), 1365-1391.
doi: 10.1137/S0363012993258732.![]() ![]() ![]() |
[11] |
G. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, 1989.
![]() ![]() |
[12] |
L. Hu and X. Mao, Almost sure exponential stabilisation of stochastic systems by state-feedback control, Automatica J. IFAC, 44 (2008), 465-471.
doi: 10.1016/j.automatica.2007.05.027.![]() ![]() ![]() |
[13] |
J. Hu, W. Liu, F. Deng and X. Mao, Advances in stabilization of hybrid stochastic differential equations by delay feedback control, SIAM J. Control Optim., 58 (2020), 735-754.
doi: 10.1137/19M1270240.![]() ![]() ![]() |
[14] |
R. C. Merton, Continuous-time finance, The Journal of Finance, 46 (1991), 1567-1570.
doi: 10.2307/2328875.![]() ![]() |
[15] |
X. Mao, Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control, Automatica J. IFAC, 49 (2013), 3677-3681.
doi: 10.1016/j.automatica.2013.09.005.![]() ![]() ![]() |
[16] |
B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, Second edition., Universitext, Springer-Verlag, Berlin, 2005.
![]() |
[17] |
J. Shao, Stabilization of regime-switching processes by feedback control based on discrete time observations, SIAM J. Control Optim., 55 (2017), 724-740.
doi: 10.1137/16M1066336.![]() ![]() ![]() |
[18] |
J. Shao and F. Xi, Stabilization of regime-switching processes by feedback control based on discrete time observations Ⅱ: State-dependent case, SIAM J. Control Optim., 57 (2019), 1413-1439.
doi: 10.1137/18M1202992.![]() ![]() ![]() |
[19] |
H. Ji, J. Shao and F. Xi, Stability of regime-switching jump diffusion processes, J. Math. Anal. Appl., 484 (2020), 21pp.
doi: 10.1137/18M1202992.![]() ![]() ![]() |
[20] |
F. Wu, G. Yin and Z. Jin, Kolmogorov-type systems with regime-switching jump diffusion perturbations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2293-2319.
doi: 10.3934/dcdsb.2016048.![]() ![]() ![]() |
[21] |
F. Xi, On the stability of jump-diffusions with Markovian switching, J. Math. Anal. Appl., 341 (2008), 588-600.
doi: 10.1016/j.jmaa.2007.10.018.![]() ![]() ![]() |
[22] |
F. Xi and C. Zhu, On Feller and strong feller properties and exponential ergodicity of regime switching jump diffusion processes with countable regimes, SIAM J. Control Optim., 55 (2017), 1789-1818.
doi: 10.1137/16M1087837.![]() ![]() ![]() |
[23] |
G. Yin and F. Xi, Stability of regime-switching jump diffusions, SIAM J. Control Optim., 48 (2010), 4525-4549.
doi: 10.1137/080738301.![]() ![]() ![]() |
[24] |
G. Yin and C. Zhu, Hybrid Switching Diffusions: Properties and Applications, Springer, New York, 2010.
doi: 10.1007/978-1-4419-1105-6.![]() ![]() ![]() |
[25] |
X. Zong, F. Wu, G. Yin and Z. Jin, Almost sure and $p$th-moment stability and stabilization of regime-switching jump diffusion systems, SIAM J. Control Optim., 52 (2014), 2595-2622.
doi: 10.1137/14095251X.![]() ![]() ![]() |