doi: 10.3934/mcrf.2021034
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Inverse optimal control of regime-switching jump diffusions

1. 

School of Mathematics, Southeast University, Nanjing 211189, China

2. 

Yonsei Frontier Lab, Yonsei University, Seoul 03722, South Korea

3. 

School of Mathematics & Statistics, Anhui Normal University, Wuhu 241000, China

* Corresponding author: Jinde Cao

Received  November 2020 Revised  February 2021 Early access June 2021

Fund Project: This work was jointly supported by the Key Project of National Science Foundation of China under Grant No. 61833005 and the National Natural Science Foundation of China under Grant No. 11871076

This paper studies the inverse optimal control using Legendre-Fenchel (in short, LF) translation method for regime-switching jump diffusions. Our approach is to first design inverse pre-optimal stabilization controllers and then obtain inverse optimal stabilizers, which avoids solving a Hamilton-Jacobi-Bellman equation. Finally, an application to stochastic Hamiltonian systems with Markov regime-switching is studied in detail for illustration.

Citation: Wensheng Yin, Jinde Cao, Yong Ren. Inverse optimal control of regime-switching jump diffusions. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021034
References:
[1]

D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, 116. Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511809781.  Google Scholar

[2]

D. Applebaum and M. Siakalli, Asymptotic stability of stochastic differential equations driven by Lévy noise, J. Appl. Probab., 46 (2009), 1116-1129.  doi: 10.1239/jap/1261670692.  Google Scholar

[3]

J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 391 (2012), 363-375.  doi: 10.1016/j.jmaa.2012.02.043.  Google Scholar

[4]

J. Bao and J. Shao, Permance and extinction of regime-switching predator-prey models, SIAM J. Math. Anal., 48 (2016), 725-739.  doi: 10.1137/15M1024512.  Google Scholar

[5]

Z. ChaoK. WangC. Zhu and Y. Zhu, Almost sure and moment exponential stability of regime-switching jump diffusions, SIAM J. Control Optim., 55 (2017), 3458-3488.  doi: 10.1137/16M1082470.  Google Scholar

[6]

H. Deng and M. Krstic, Stochastic nonlinear stabilization Ⅰ: A backstepping design, Systems Control Lett., 32 (1997), 143-150.  doi: 10.1016/S0167-6911(97)00068-6.  Google Scholar

[7]

H. Deng and M. Krstić, Stochastic nonlinear stabilization-Ⅱ: Inverse optimality, Systems Control Lett., 32 (1997), 151-159.  doi: 10.1016/S0167-6911(97)00067-4.  Google Scholar

[8]

K. D. Do, Global inverse optimal stabilization of stochastic nonholonomic systems, Systems Control Lett., 75 (2015), 41-55.  doi: 10.1016/j.sysconle.2014.11.003.  Google Scholar

[9]

K. D. Do, Inverse optimal control of stochastic systems driven by Lévy processes, Automatica, 107 (2019), 539-550.  doi: 10.1016/j.automatica.2019.06.016.  Google Scholar

[10]

R. A. Freeman and P. V. Kokotovic, Inverse optimality in robust stabilization, SIAM J. Control Optim., 34 (1996), 1365-1391.  doi: 10.1137/S0363012993258732.  Google Scholar

[11] G. HardyJ. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, 1989.   Google Scholar
[12]

L. Hu and X. Mao, Almost sure exponential stabilisation of stochastic systems by state-feedback control, Automatica J. IFAC, 44 (2008), 465-471.  doi: 10.1016/j.automatica.2007.05.027.  Google Scholar

[13]

J. HuW. LiuF. Deng and X. Mao, Advances in stabilization of hybrid stochastic differential equations by delay feedback control, SIAM J. Control Optim., 58 (2020), 735-754.  doi: 10.1137/19M1270240.  Google Scholar

[14]

R. C. Merton, Continuous-time finance, The Journal of Finance, 46 (1991), 1567-1570.  doi: 10.2307/2328875.  Google Scholar

[15]

X. Mao, Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control, Automatica J. IFAC, 49 (2013), 3677-3681.  doi: 10.1016/j.automatica.2013.09.005.  Google Scholar

[16]

B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, Second edition., Universitext, Springer-Verlag, Berlin, 2005. Google Scholar

[17]

J. Shao, Stabilization of regime-switching processes by feedback control based on discrete time observations, SIAM J. Control Optim., 55 (2017), 724-740.  doi: 10.1137/16M1066336.  Google Scholar

[18]

J. Shao and F. Xi, Stabilization of regime-switching processes by feedback control based on discrete time observations Ⅱ: State-dependent case, SIAM J. Control Optim., 57 (2019), 1413-1439.  doi: 10.1137/18M1202992.  Google Scholar

[19]

H. Ji, J. Shao and F. Xi, Stability of regime-switching jump diffusion processes, J. Math. Anal. Appl., 484 (2020), 21pp. doi: 10.1137/18M1202992.  Google Scholar

[20]

F. WuG. Yin and Z. Jin, Kolmogorov-type systems with regime-switching jump diffusion perturbations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2293-2319.  doi: 10.3934/dcdsb.2016048.  Google Scholar

[21]

F. Xi, On the stability of jump-diffusions with Markovian switching, J. Math. Anal. Appl., 341 (2008), 588-600.  doi: 10.1016/j.jmaa.2007.10.018.  Google Scholar

[22]

F. Xi and C. Zhu, On Feller and strong feller properties and exponential ergodicity of regime switching jump diffusion processes with countable regimes, SIAM J. Control Optim., 55 (2017), 1789-1818.  doi: 10.1137/16M1087837.  Google Scholar

[23]

G. Yin and F. Xi, Stability of regime-switching jump diffusions, SIAM J. Control Optim., 48 (2010), 4525-4549.  doi: 10.1137/080738301.  Google Scholar

[24]

G. Yin and C. Zhu, Hybrid Switching Diffusions: Properties and Applications, Springer, New York, 2010. doi: 10.1007/978-1-4419-1105-6.  Google Scholar

[25]

X. ZongF. WuG. Yin and Z. Jin, Almost sure and $p$th-moment stability and stabilization of regime-switching jump diffusion systems, SIAM J. Control Optim., 52 (2014), 2595-2622.  doi: 10.1137/14095251X.  Google Scholar

show all references

References:
[1]

D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, 116. Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511809781.  Google Scholar

[2]

D. Applebaum and M. Siakalli, Asymptotic stability of stochastic differential equations driven by Lévy noise, J. Appl. Probab., 46 (2009), 1116-1129.  doi: 10.1239/jap/1261670692.  Google Scholar

[3]

J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 391 (2012), 363-375.  doi: 10.1016/j.jmaa.2012.02.043.  Google Scholar

[4]

J. Bao and J. Shao, Permance and extinction of regime-switching predator-prey models, SIAM J. Math. Anal., 48 (2016), 725-739.  doi: 10.1137/15M1024512.  Google Scholar

[5]

Z. ChaoK. WangC. Zhu and Y. Zhu, Almost sure and moment exponential stability of regime-switching jump diffusions, SIAM J. Control Optim., 55 (2017), 3458-3488.  doi: 10.1137/16M1082470.  Google Scholar

[6]

H. Deng and M. Krstic, Stochastic nonlinear stabilization Ⅰ: A backstepping design, Systems Control Lett., 32 (1997), 143-150.  doi: 10.1016/S0167-6911(97)00068-6.  Google Scholar

[7]

H. Deng and M. Krstić, Stochastic nonlinear stabilization-Ⅱ: Inverse optimality, Systems Control Lett., 32 (1997), 151-159.  doi: 10.1016/S0167-6911(97)00067-4.  Google Scholar

[8]

K. D. Do, Global inverse optimal stabilization of stochastic nonholonomic systems, Systems Control Lett., 75 (2015), 41-55.  doi: 10.1016/j.sysconle.2014.11.003.  Google Scholar

[9]

K. D. Do, Inverse optimal control of stochastic systems driven by Lévy processes, Automatica, 107 (2019), 539-550.  doi: 10.1016/j.automatica.2019.06.016.  Google Scholar

[10]

R. A. Freeman and P. V. Kokotovic, Inverse optimality in robust stabilization, SIAM J. Control Optim., 34 (1996), 1365-1391.  doi: 10.1137/S0363012993258732.  Google Scholar

[11] G. HardyJ. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, 1989.   Google Scholar
[12]

L. Hu and X. Mao, Almost sure exponential stabilisation of stochastic systems by state-feedback control, Automatica J. IFAC, 44 (2008), 465-471.  doi: 10.1016/j.automatica.2007.05.027.  Google Scholar

[13]

J. HuW. LiuF. Deng and X. Mao, Advances in stabilization of hybrid stochastic differential equations by delay feedback control, SIAM J. Control Optim., 58 (2020), 735-754.  doi: 10.1137/19M1270240.  Google Scholar

[14]

R. C. Merton, Continuous-time finance, The Journal of Finance, 46 (1991), 1567-1570.  doi: 10.2307/2328875.  Google Scholar

[15]

X. Mao, Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control, Automatica J. IFAC, 49 (2013), 3677-3681.  doi: 10.1016/j.automatica.2013.09.005.  Google Scholar

[16]

B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, Second edition., Universitext, Springer-Verlag, Berlin, 2005. Google Scholar

[17]

J. Shao, Stabilization of regime-switching processes by feedback control based on discrete time observations, SIAM J. Control Optim., 55 (2017), 724-740.  doi: 10.1137/16M1066336.  Google Scholar

[18]

J. Shao and F. Xi, Stabilization of regime-switching processes by feedback control based on discrete time observations Ⅱ: State-dependent case, SIAM J. Control Optim., 57 (2019), 1413-1439.  doi: 10.1137/18M1202992.  Google Scholar

[19]

H. Ji, J. Shao and F. Xi, Stability of regime-switching jump diffusion processes, J. Math. Anal. Appl., 484 (2020), 21pp. doi: 10.1137/18M1202992.  Google Scholar

[20]

F. WuG. Yin and Z. Jin, Kolmogorov-type systems with regime-switching jump diffusion perturbations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2293-2319.  doi: 10.3934/dcdsb.2016048.  Google Scholar

[21]

F. Xi, On the stability of jump-diffusions with Markovian switching, J. Math. Anal. Appl., 341 (2008), 588-600.  doi: 10.1016/j.jmaa.2007.10.018.  Google Scholar

[22]

F. Xi and C. Zhu, On Feller and strong feller properties and exponential ergodicity of regime switching jump diffusion processes with countable regimes, SIAM J. Control Optim., 55 (2017), 1789-1818.  doi: 10.1137/16M1087837.  Google Scholar

[23]

G. Yin and F. Xi, Stability of regime-switching jump diffusions, SIAM J. Control Optim., 48 (2010), 4525-4549.  doi: 10.1137/080738301.  Google Scholar

[24]

G. Yin and C. Zhu, Hybrid Switching Diffusions: Properties and Applications, Springer, New York, 2010. doi: 10.1007/978-1-4419-1105-6.  Google Scholar

[25]

X. ZongF. WuG. Yin and Z. Jin, Almost sure and $p$th-moment stability and stabilization of regime-switching jump diffusion systems, SIAM J. Control Optim., 52 (2014), 2595-2622.  doi: 10.1137/14095251X.  Google Scholar

[1]

Jiaqin Wei. Time-inconsistent optimal control problems with regime-switching. Mathematical Control & Related Fields, 2017, 7 (4) : 585-622. doi: 10.3934/mcrf.2017022

[2]

Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072

[3]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[4]

Fuke Wu, George Yin, Zhuo Jin. Kolmogorov-type systems with regime-switching jump diffusion perturbations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2293-2319. doi: 10.3934/dcdsb.2016048

[5]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control & Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[6]

Zhuo Jin, George Yin, Hailiang Yang. Numerical methods for dividend optimization using regime-switching jump-diffusion models. Mathematical Control & Related Fields, 2011, 1 (1) : 21-40. doi: 10.3934/mcrf.2011.1.21

[7]

Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100

[8]

Jiaqin Wei, Zhuo Jin, Hailiang Yang. Optimal dividend policy with liability constraint under a hidden Markov regime-switching model. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1965-1993. doi: 10.3934/jimo.2018132

[9]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4887-4905. doi: 10.3934/dcdsb.2020317

[10]

Lin Xu, Rongming Wang, Dingjun Yao. Optimal stochastic investment games under Markov regime switching market. Journal of Industrial & Management Optimization, 2014, 10 (3) : 795-815. doi: 10.3934/jimo.2014.10.795

[11]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[12]

Mourad Bellassoued, Raymond Brummelhuis, Michel Cristofol, Éric Soccorsi. Stable reconstruction of the volatility in a regime-switching local-volatility model. Mathematical Control & Related Fields, 2020, 10 (1) : 189-215. doi: 10.3934/mcrf.2019036

[13]

Yaozhong Hu, David Nualart, Xiaobin Sun, Yingchao Xie. Smoothness of density for stochastic differential equations with Markovian switching. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3615-3631. doi: 10.3934/dcdsb.2018307

[14]

Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial & Management Optimization, 2020, 16 (2) : 531-551. doi: 10.3934/jimo.2018166

[15]

Yinghui Dong, Kam Chuen Yuen, Guojing Wang. Pricing credit derivatives under a correlated regime-switching hazard processes model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1395-1415. doi: 10.3934/jimo.2016079

[16]

Jiapeng Liu, Ruihua Liu, Dan Ren. Investment and consumption in regime-switching models with proportional transaction costs and log utility. Mathematical Control & Related Fields, 2017, 7 (3) : 465-491. doi: 10.3934/mcrf.2017017

[17]

Ishak Alia. Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach. Mathematical Control & Related Fields, 2020, 10 (4) : 785-826. doi: 10.3934/mcrf.2020020

[18]

Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447

[19]

Yaozhong Hu, Yanghui Liu, David Nualart. Taylor schemes for rough differential equations and fractional diffusions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3115-3162. doi: 10.3934/dcdsb.2016090

[20]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

2020 Impact Factor: 1.284

Article outline

[Back to Top]