doi: 10.3934/mcrf.2021036
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Cross-constrained variational method and nonlinear Schrödinger equation with partial confinement

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China

* Corresponding author: Jian Zhang

Received  December 2020 Revised  April 2021 Early access July 2021

Fund Project: The project is supported by the National Natural Science Foundation of China (Grant No. 11871138)

In this paper, we study the nonlinear Schrödinger equation with a partial confinement. By applying the cross-constrained variational arguments and invariant manifolds of the evolution flow, the sharp condition for global existence and blowup of the solution is derived.

Citation: Chenglin Wang, Jian Zhang. Cross-constrained variational method and nonlinear Schrödinger equation with partial confinement. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021036
References:
[1]

P. AntonelliR. Carles and J. D. Silva, Scattering for nonlinear Schrödinger equation under partial harmonic confinement, Comm. Math. Phys., 334 (2015), 367-396.  doi: 10.1007/s00220-014-2166-y.  Google Scholar

[2]

P. AntonelliA. AthanassoulisZ. Y. Huang and P. A. Markowich, Numerical simulations of x-ray free electron lasers (XFEL), Multiscale Model. Simul., 12) (2014), 1607-1621.  doi: 10.1137/130927838.  Google Scholar

[3]

W. Z. Bao and Y. Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1-135.  doi: 10.3934/krm.2013.6.1.  Google Scholar

[4]

J. BellazziniN. BoussaïdL. Jeanjean and N. Visciglia, Existence and stability of standing waves for supercritical NLS with a partial confinement, Commun. Math. Phys., 353 (2017), 229-251.  doi: 10.1007/s00220-017-2866-1.  Google Scholar

[5]

T. Cazenave, Semilinear Schrödinger Equations, Courant Institute of Mathematical Sciences, American Mathematical Society, New York, 2003. Google Scholar

[6]

R. CarlesP. A. Markowich and C. Sparber, On the Gross-Pitaevskii equation for trapped dipolar quantum gases, Nonlinearity, 21 (2008), 2569-2590.  doi: 10.1088/0951-7715/21/11/006.  Google Scholar

[7]

T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[8]

Z. H. Gan and J. Zhang, Sharp threshold of global existence and insatbility of standing wave for a Davey-Stewartson system, Comm. Math. Phys., 283 (2008), 93-125.  doi: 10.1007/s00220-008-0456-y.  Google Scholar

[9]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[10]

C. Josserand and Y. Pomeau, Nonlinear aspects of the theory of Bose-Einstein condensates, Nonlinearity, 14 (2001), R25–R62. doi: 10.1088/0951-7715/14/5/201.  Google Scholar

[11]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[12]

M. Lu, N. Q. Burdick, S. H. Youn and B. L. Lev, Strongly dipolar Bose-Einstein condensate of dysprosium, Phys. Rev. Lett., 107 (2011), 190401. doi: 10.1103/PhysRevLett.107.190401.  Google Scholar

[13]

M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement, Commun. Pure. Appl. Anal., 17 (2018), 1671-1680.  doi: 10.3934/cpaa.2018080.  Google Scholar

[14]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel. J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[15]

J. J. Pan and J. Zhang, Mass concentration for nonlinear Schrödinger equation with partial confinement, J. Math. Anal. Appl., 481 (2020), 123484, 14 pp. doi: 10.1016/j.jmaa.2019.123484.  Google Scholar

[16]

L. Pitaevskii and S. Stringari, Bose-Einstein Condensation. International Series of Monographs on Physics, The Clarendon Press, Oxford University Press, Oxford, 2003. Google Scholar

[17]

J. Stubbe, Global solutions and stable ground states of nonlinear Schrödinger equations, Phys. D., 48 (1991), 259-272.  doi: 10.1016/0167-2789(91)90087-P.  Google Scholar

[18]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.   Google Scholar

[19]

R. Z. Xu and C. Xu, Cross-constrained problems for nonlinear Schrödiner equation with harmonic potential, Electron. J. Differential Equations, 211 (2012), 12 pp.  Google Scholar

[20]

J. Zhang, Stability of attractive Bose-Einstein condensates, J. Statist. Phys., 101 (2000), 731-746.  doi: 10.1023/A:1026437923987.  Google Scholar

[21]

J. Zhang, Cross-constrained variational problem and nonlinear Schrödinger equation, Foundations of Computational Mathematics, World Scientific Publishing, River Edge, NJ, 2002,457–469.  Google Scholar

[22]

J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Comm. Partial Differential Equations, 30 (2005), 1429-1443.  doi: 10.1080/03605300500299539.  Google Scholar

[23]

J. Zhang and S. H. Zhu, Sharp energy criteria and singularity of blow-up solutions for the Davey-Stewartson system, Commun. Math. Sci., 17 (2019), 653-667.  doi: 10.4310/CMS.2019.v17.n3.a4.  Google Scholar

[24]

J. Zhang, Sharp threshold of global existence for nonlinear Schrödinger equation with partial confinement, Nonlinear Anal., 196 (2020), 111832, 7 pp. doi: 10.1016/j.na.2020.111832.  Google Scholar

show all references

References:
[1]

P. AntonelliR. Carles and J. D. Silva, Scattering for nonlinear Schrödinger equation under partial harmonic confinement, Comm. Math. Phys., 334 (2015), 367-396.  doi: 10.1007/s00220-014-2166-y.  Google Scholar

[2]

P. AntonelliA. AthanassoulisZ. Y. Huang and P. A. Markowich, Numerical simulations of x-ray free electron lasers (XFEL), Multiscale Model. Simul., 12) (2014), 1607-1621.  doi: 10.1137/130927838.  Google Scholar

[3]

W. Z. Bao and Y. Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1-135.  doi: 10.3934/krm.2013.6.1.  Google Scholar

[4]

J. BellazziniN. BoussaïdL. Jeanjean and N. Visciglia, Existence and stability of standing waves for supercritical NLS with a partial confinement, Commun. Math. Phys., 353 (2017), 229-251.  doi: 10.1007/s00220-017-2866-1.  Google Scholar

[5]

T. Cazenave, Semilinear Schrödinger Equations, Courant Institute of Mathematical Sciences, American Mathematical Society, New York, 2003. Google Scholar

[6]

R. CarlesP. A. Markowich and C. Sparber, On the Gross-Pitaevskii equation for trapped dipolar quantum gases, Nonlinearity, 21 (2008), 2569-2590.  doi: 10.1088/0951-7715/21/11/006.  Google Scholar

[7]

T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[8]

Z. H. Gan and J. Zhang, Sharp threshold of global existence and insatbility of standing wave for a Davey-Stewartson system, Comm. Math. Phys., 283 (2008), 93-125.  doi: 10.1007/s00220-008-0456-y.  Google Scholar

[9]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[10]

C. Josserand and Y. Pomeau, Nonlinear aspects of the theory of Bose-Einstein condensates, Nonlinearity, 14 (2001), R25–R62. doi: 10.1088/0951-7715/14/5/201.  Google Scholar

[11]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[12]

M. Lu, N. Q. Burdick, S. H. Youn and B. L. Lev, Strongly dipolar Bose-Einstein condensate of dysprosium, Phys. Rev. Lett., 107 (2011), 190401. doi: 10.1103/PhysRevLett.107.190401.  Google Scholar

[13]

M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement, Commun. Pure. Appl. Anal., 17 (2018), 1671-1680.  doi: 10.3934/cpaa.2018080.  Google Scholar

[14]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel. J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[15]

J. J. Pan and J. Zhang, Mass concentration for nonlinear Schrödinger equation with partial confinement, J. Math. Anal. Appl., 481 (2020), 123484, 14 pp. doi: 10.1016/j.jmaa.2019.123484.  Google Scholar

[16]

L. Pitaevskii and S. Stringari, Bose-Einstein Condensation. International Series of Monographs on Physics, The Clarendon Press, Oxford University Press, Oxford, 2003. Google Scholar

[17]

J. Stubbe, Global solutions and stable ground states of nonlinear Schrödinger equations, Phys. D., 48 (1991), 259-272.  doi: 10.1016/0167-2789(91)90087-P.  Google Scholar

[18]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.   Google Scholar

[19]

R. Z. Xu and C. Xu, Cross-constrained problems for nonlinear Schrödiner equation with harmonic potential, Electron. J. Differential Equations, 211 (2012), 12 pp.  Google Scholar

[20]

J. Zhang, Stability of attractive Bose-Einstein condensates, J. Statist. Phys., 101 (2000), 731-746.  doi: 10.1023/A:1026437923987.  Google Scholar

[21]

J. Zhang, Cross-constrained variational problem and nonlinear Schrödinger equation, Foundations of Computational Mathematics, World Scientific Publishing, River Edge, NJ, 2002,457–469.  Google Scholar

[22]

J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Comm. Partial Differential Equations, 30 (2005), 1429-1443.  doi: 10.1080/03605300500299539.  Google Scholar

[23]

J. Zhang and S. H. Zhu, Sharp energy criteria and singularity of blow-up solutions for the Davey-Stewartson system, Commun. Math. Sci., 17 (2019), 653-667.  doi: 10.4310/CMS.2019.v17.n3.a4.  Google Scholar

[24]

J. Zhang, Sharp threshold of global existence for nonlinear Schrödinger equation with partial confinement, Nonlinear Anal., 196 (2020), 111832, 7 pp. doi: 10.1016/j.na.2020.111832.  Google Scholar

[1]

Zaihui Gan. Cross-constrained variational methods for the nonlinear Klein-Gordon equations with an inverse square potential. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1541-1554. doi: 10.3934/cpaa.2009.8.1541

[2]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[3]

Huifang Jia, Gongbao Li, Xiao Luo. Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2739-2766. doi: 10.3934/dcds.2020148

[4]

Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481

[5]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

[6]

Jianqing Chen, Boling Guo. Sharp global existence and blowing up results for inhomogeneous Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 357-367. doi: 10.3934/dcdsb.2007.8.357

[7]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

[8]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[9]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

[10]

Rémi Carles. Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 385-398. doi: 10.3934/dcds.2005.13.385

[11]

Masahoto Ohta, Grozdena Todorova. Remarks on global existence and blowup for damped nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2009, 23 (4) : 1313-1325. doi: 10.3934/dcds.2009.23.1313

[12]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

[13]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[14]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[15]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[16]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[17]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[18]

Hongzi Cong, Lufang Mi, Yunfeng Shi, Yuan Wu. On the existence of full dimensional KAM torus for nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6599-6630. doi: 10.3934/dcds.2019287

[19]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[20]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (41)
  • HTML views (92)
  • Cited by (0)

Other articles
by authors

[Back to Top]