doi: 10.3934/mcrf.2021040
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Stable invariant manifolds with application to control problems

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Russia, 119991, Moscow, GSP-1, 1 Leninskiye Gory, Main Building, Russia

* Corresponding author: Alexey Gorshkov

Received  May 2019 Revised  August 2020 Early access September 2021

Fund Project: This article was recruited by Andrii Mironchenko

In this article we develop the theory of stable invariant manifolds for evolution equations with application to control problem. We will construct invariant subspaces for linear equations which can be extended to the non-linear equations in the neighbourhood of the equilibrium with help of perturbation theory. Here will be considered both cases of the discrete and continuous spectrum of the generator associated with resolving semi-group. The example of global invariant manifold will be presented for Burgers equation.

Citation: Alexey Gorshkov. Stable invariant manifolds with application to control problems. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021040
References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Nauka, Moscow English transl., 1983; Stud. Math. Appl., vol. 25, North-Holland, Amsterdam 1992.  Google Scholar

[2]

A. V. Fursikov, Stabilizability of a quasi-linear parabolic equation by means of a boundary control with feedback, Sb. Math., 192 (2001), 593-639.  doi: 10.1070/sm2001v192n04ABEH000560.  Google Scholar

[3]

A. V. Fursikov, Stabilizability of two-dimensional Navier-Stokes equations with help of a boundary feedback control, J. Math. Fluid Mech., 3 (2001), 259-301.  doi: 10.1007/PL00000972.  Google Scholar

[4]

A. V. Fursikov and A. V. Gorshkov, Certain questions of feedback stabilization for Navier-Stokes equations, Evol. Equ. Control Theory, 1 (2012), 109-140.  doi: 10.3934/eect.2012.1.109.  Google Scholar

[5]

I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Math. Monogr., vol. 18, Amer. Math. Soc., Providence, RI 1969.  Google Scholar

[6]

A. V. Gorshkov, Invariant manifolds for the Burgers equation defined on a semiaxis, Comput. Math. Math. Phys., 58 (2018), 90-101.  doi: 10.1134/S0965542518010062.  Google Scholar

[7]

A. V. Gorshkov, Boundary stabilization of Stokes system in exterior domains, J. Math. Fluid Mech., 18 (2016), 679-697.  doi: 10.1007/s00021-016-0258-5.  Google Scholar

[8]

A. V. Gorshkov, Stabilizing a solution of the 2D Navier-Stokes system in the exterior of a bounded domain by means of a control on the boundary, Sbornik: Mathematics, 203 (2012), 1244-1268.  doi: 10.1070/SM2012v203n09ABEH004263.  Google Scholar

[9]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, Springer-Verlag, Berlin-New York 1981.  Google Scholar

[10]

T. Kato, Perturbation Theory of Linear Operators, Principles of Mathematical Sciences, Springer-Verlag, 1966.  Google Scholar

[11]

M. V. Keldysh, On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators, Russian Math. Surveys, 26 (1971), 15-41.   Google Scholar

[12]

A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Monogr., vol. 71, Amer. Math. Soc., Providence, RI 1988. doi: 10.1090/mmono/071.  Google Scholar

[13]

A. A. Shkalikov, On the basis property of root vectors of a perturbed self-adjoint operator, Proc. Steklov Inst. Math., 269 (2010), 284-298.  doi: 10.1134/S0081543810020240.  Google Scholar

[14]

C. E. Wayne, Invariant manifolds for parabolic partial differential equations on unbounded domains, Arch. Rational Mech. Anal., 138 (1997), 279-306. doi: 10.1007/s002050050042.  Google Scholar

[15]

K. Yosida, Functional Analysis, 6th ed., Springer-Verlag, Berlin-New York, 1980.  Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Nauka, Moscow English transl., 1983; Stud. Math. Appl., vol. 25, North-Holland, Amsterdam 1992.  Google Scholar

[2]

A. V. Fursikov, Stabilizability of a quasi-linear parabolic equation by means of a boundary control with feedback, Sb. Math., 192 (2001), 593-639.  doi: 10.1070/sm2001v192n04ABEH000560.  Google Scholar

[3]

A. V. Fursikov, Stabilizability of two-dimensional Navier-Stokes equations with help of a boundary feedback control, J. Math. Fluid Mech., 3 (2001), 259-301.  doi: 10.1007/PL00000972.  Google Scholar

[4]

A. V. Fursikov and A. V. Gorshkov, Certain questions of feedback stabilization for Navier-Stokes equations, Evol. Equ. Control Theory, 1 (2012), 109-140.  doi: 10.3934/eect.2012.1.109.  Google Scholar

[5]

I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Math. Monogr., vol. 18, Amer. Math. Soc., Providence, RI 1969.  Google Scholar

[6]

A. V. Gorshkov, Invariant manifolds for the Burgers equation defined on a semiaxis, Comput. Math. Math. Phys., 58 (2018), 90-101.  doi: 10.1134/S0965542518010062.  Google Scholar

[7]

A. V. Gorshkov, Boundary stabilization of Stokes system in exterior domains, J. Math. Fluid Mech., 18 (2016), 679-697.  doi: 10.1007/s00021-016-0258-5.  Google Scholar

[8]

A. V. Gorshkov, Stabilizing a solution of the 2D Navier-Stokes system in the exterior of a bounded domain by means of a control on the boundary, Sbornik: Mathematics, 203 (2012), 1244-1268.  doi: 10.1070/SM2012v203n09ABEH004263.  Google Scholar

[9]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, Springer-Verlag, Berlin-New York 1981.  Google Scholar

[10]

T. Kato, Perturbation Theory of Linear Operators, Principles of Mathematical Sciences, Springer-Verlag, 1966.  Google Scholar

[11]

M. V. Keldysh, On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators, Russian Math. Surveys, 26 (1971), 15-41.   Google Scholar

[12]

A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Monogr., vol. 71, Amer. Math. Soc., Providence, RI 1988. doi: 10.1090/mmono/071.  Google Scholar

[13]

A. A. Shkalikov, On the basis property of root vectors of a perturbed self-adjoint operator, Proc. Steklov Inst. Math., 269 (2010), 284-298.  doi: 10.1134/S0081543810020240.  Google Scholar

[14]

C. E. Wayne, Invariant manifolds for parabolic partial differential equations on unbounded domains, Arch. Rational Mech. Anal., 138 (1997), 279-306. doi: 10.1007/s002050050042.  Google Scholar

[15]

K. Yosida, Functional Analysis, 6th ed., Springer-Verlag, Berlin-New York, 1980.  Google Scholar

[1]

Wasim Akram, Debanjana Mitra. Local stabilization of viscous Burgers equation with memory. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021032

[2]

Andrei Fursikov, Lyubov Shatina. Nonlocal stabilization by starting control of the normal equation generated by Helmholtz system. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1187-1242. doi: 10.3934/dcds.2018050

[3]

Ionuţ Munteanu. Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 2173-2185. doi: 10.3934/dcds.2019091

[4]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[5]

Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021

[6]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[7]

Chun-Hsiung Hsia, Xiaoming Wang. On a Burgers' type equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1121-1139. doi: 10.3934/dcdsb.2006.6.1121

[8]

Antonios Zagaris, Christophe Vandekerckhove, C. William Gear, Tasso J. Kaper, Ioannis G. Kevrekidis. Stability and stabilization of the constrained runs schemes for equation-free projection to a slow manifold. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2759-2803. doi: 10.3934/dcds.2012.32.2759

[9]

Eduardo Casas, Fredi Tröltzsch. Sparse optimal control for the heat equation with mixed control-state constraints. Mathematical Control & Related Fields, 2020, 10 (3) : 471-491. doi: 10.3934/mcrf.2020007

[10]

Joachim von Below, Gaëlle Pincet Mailly, Jean-François Rault. Growth order and blow up points for the parabolic Burgers' equation under dynamical boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 825-836. doi: 10.3934/dcdss.2013.6.825

[11]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[12]

Panagiotis Stinis. A hybrid method for the inviscid Burgers equation. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 793-799. doi: 10.3934/dcds.2003.9.793

[13]

Xiaorui Wang, Genqi Xu. Uniform stabilization of a wave equation with partial Dirichlet delayed control. Evolution Equations & Control Theory, 2020, 9 (2) : 509-533. doi: 10.3934/eect.2020022

[14]

Luz de Teresa, Enrique Zuazua. Identification of the class of initial data for the insensitizing control of the heat equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 457-471. doi: 10.3934/cpaa.2009.8.457

[15]

Xenia Kerkhoff, Sandra May. Commutative properties for conservative space-time DG discretizations of optimal control problems involving the viscous Burgers equation. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021054

[16]

Maicon Sônego. Stable solution induced by domain geometry in the heat equation with nonlinear boundary conditions on surfaces of revolution. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5981-5988. doi: 10.3934/dcdsb.2019116

[17]

E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics & Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010

[18]

Yavar Kian, Alexander Tetlow. Hölder-stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic Schrödinger equation. Inverse Problems & Imaging, 2020, 14 (5) : 819-839. doi: 10.3934/ipi.2020038

[19]

Mourad Bellassoued, Ibtissem Ben Aïcha, Zouhour Rezig. Stable determination of a vector field in a non-Self-Adjoint dynamical Schrödinger equation on Riemannian manifolds. Mathematical Control & Related Fields, 2021, 11 (2) : 403-431. doi: 10.3934/mcrf.2020042

[20]

Jong Uhn Kim. On the stochastic Burgers equation with a polynomial nonlinearity in the real line. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 835-866. doi: 10.3934/dcdsb.2006.6.835

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (62)
  • HTML views (91)
  • Cited by (0)

Other articles
by authors

[Back to Top]