[1]
|
M. Armand and J.-M. Tarascon, Building better batteries, Nature, 451 (2008), 652-657.
doi: 10.1038/451652a.
|
[2]
|
M. J. Balas, Finite-dimensional controllers for linear distributed parameter systems: Exponential stability using residual mode filters, J. Math. Anal. Appl., 133 (1988), 283-296.
doi: 10.1016/0022-247X(88)90401-5.
|
[3]
|
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer-Verlag New York, 2011.
|
[4]
|
N. A. Chaturvedi, R. Klein, J. Christensen, J. Ahmed and A. Kojic, Algorithms for advanced battery-management systems, IEEE Control Systems Magazine, 30 (2010), 49-68.
doi: 10.1109/MCS.2010.936293.
|
[5]
|
J.-P. Corriou, Nonlinear control of reactors with state estimation, Process Control, Springer International Publishing, Cham, (2018), 769–791.
doi: 10.1007/978-3-319-61143-3_19.
|
[6]
|
R. F. Curtain, Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input, IEEE Trans. Automat. Control, 27 (1982), 98-104.
doi: 10.1109/TAC.1982.1102875.
|
[7]
|
J. Deutscher, A backstepping approach to the output regulation of boundary controlled parabolic PDEs, Automatica J. IFAC, 57 (2015), 56-64.
doi: 10.1016/j.automatica.2015.04.008.
|
[8]
|
J. Deutscher, Backstepping design of robust output feedback regulators for boundary controlled parabolic PDEs, IEEE Trans. Automat. Control, 61 (2016), 2288-2294.
doi: 10.1109/TAC.2015.2491718.
|
[9]
|
C. Harkort and J. Deutscher, Finite-dimensional observer-based control of linear distributed parameter systems using cascaded output observers, Internat. J. Control, 84 (2011), 107-122.
doi: 10.1080/00207179.2010.541942.
|
[10]
|
H. K. Khalil, Nonlinear Systems, Macmillan Publishing Company, New York, 1992.
|
[11]
|
M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs, Advances in Design and Control, 16. Society for Industrial and Applied Mathematic, 2008.
doi: 10.1137/1.9780898718607.
|
[12]
|
S. Limmer, Dynamic pricing for electric vehicle charging-a literature review, Energies, 12, 3574.
doi: 10.3390/en12183574.
|
[13]
|
T. Meurer, Control of Higher-Dimensional PDEs : Flatness and Backstepping Designs, Communications and Control Engineering Series, Springer, Heidelberg, 2013.
doi: 10.1007/978-3-642-30015-8.
|
[14]
|
T. Meurer and A. Kugi, Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness, Automatica J. IFAC, 45 (2009), 1182-1194.
doi: 10.1016/j.automatica.2009.01.006.
|
[15]
|
T. Meurer and M. Zeitz, Feedforward and feedback tracking control of nonlinear diffusion-convection-reaction systems using summability methods, Industrial and Engineering Chemistry Research, 44 (2005), 2532-2548.
doi: 10.1021/ie0495729.
|
[16]
|
S. Moura, Scott-Moura/SPMeT: The full SPMeT.
doi: 10.5281/zenodo.221376.
|
[17]
|
S. J. Moura, Estimation and control of battery electrochemistry models: A tutorial, in 2015 54th IEEE Conference on Decision and Control (CDC), (2015), 3906–3912.
|
[18]
|
S. J. Moura, F. B. Argomedo, R. Klein, A. Mirtabatabaei and M. Krstic, Battery state estimation for a single particle model with electrolyte dynamics, IEEE Transactions on Control Systems Technology, 25 (2017), 453-468.
doi: 10.1109/TCST.2016.2571663.
|
[19]
|
S. J. Moura, N. A. Chaturvedi and M. Krstic, PDE estimation techniques for advanced battery management systems — Part I: SOC estimation, in American Control Conference (ACC), Montréal, Canada, (2012), 559–565.
doi: 10.1109/ACC.2012.6315019.
|
[20]
|
S. J. Moura, N. A. Chaturvedi and M. Krstić, Adaptive partial differential equation observer for battery state-of-charge/state-of-health estimation via an electrochemical model, Journal of Dynamic Systems, Measurement, and Control, 136 (2014), 011015, 11 pp.
doi: 10.1115/1.4024801.
|
[21]
|
N. Petit, P. Rouchon, J.-M. Boueilh, F. Guérin and P. Pinvidic, Control of an industrial polymerization reactor using flatness, Journal of Process Control, 12 (2002), 659–665, URL http://www.sciencedirect.com/science/article/pii/S095915240100049X.
|
[22]
|
T. Reis and T. Selig, Funnel control for the boundary controlled heat equation, SIAM J. Control Optim., 53 (2015), 547-574.
doi: 10.1137/140971567.
|
[23]
|
S. Santhanagopalan, Q. Guo, P. Ramadass and R. E. White, Review of models for predicting the cycling performance of lithium ion batteries, Journal of Power Sources, 156 (2006), 620-628.
doi: 10.1016/j.jpowsour.2005.05.070.
|
[24]
|
A. Smyshlyaev and M. Krstic, Adaptive boundary control for unstable parabolic pdes-part II: Estimation-based designs, Automatica J. IFAC, 43 (2007), 1543-1556.
doi: 10.1016/j.automatica.2007.02.014.
|
[25]
|
A. Terrand-Jeanne, V. Andrieu, V. D. S. Martins and C.-Z. Xu, Adding integral action for open-loop exponentially stable semigroups and application to boundary control of PDE systems, IEEE Trans. Automat. Control, 65 (2020), 4481-4492.
doi: 10.1109/TAC.2019.2957349.
|
[26]
|
K. E. Thomas, J. Newman and R. M. Darling, Mathematical Modeling of Lithium Batteries, Springer US, Boston, MA, (2002), 345–392.
doi: 10.1007/0-306-47508-1_13.
|
[27]
|
R. Vazquez and M. Krstic, Boundary control and estimation of reaction–diffusion equations on the sphere under revolution symmetry conditions, Internat. J. Control, 92 (2019), 2-11.
doi: 10.1080/00207179.2017.1286691.
|
[28]
|
C.-Z. Xu and H. Jerbi, A robust PI-controller for infinite-dimensional systems, Internat. J. Control, 61 (1995), 33-45.
doi: 10.1080/00207179508921891.
|