Advanced Search
Article Contents
Article Contents

Convergence of coprime factor perturbations for robust stabilization of Oseen systems

  • * Corresponding author: Jan Heiland

    * Corresponding author: Jan Heiland

This article was recruited by Andrii Mironchenko

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • Linearization based controllers for incompressible flows have been proven to work in theory and in simulations. To realize such a controller numerically, the infinite dimensional system has to be linearized and discretized. The unavoidable consistency errors add a small but critical uncertainty to the controller model which will likely make it fail, especially when an observer is involved. Standard robust controller designs can compensate small uncertainties if they can be qualified as a coprime factor perturbation of the plant. We show that for the linearized Navier-Stokes equations, a linearization error can be expressed as a coprime factor perturbation and that this perturbation smoothly depends on the size of the linearization error. In particular, improving the linearization makes the perturbation smaller so that, eventually, standard robust controller will stabilize the system.

    Mathematics Subject Classification: Primary: 93B52, 35Q30; Secondary: 93C73.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Computational domain of the cylinder wake

  • [1] M. Badra, Stabilisation par Feedback et Approximation des Equations de Navier-Stokes, PhD thesis, Université Paul Sabatier, Toulouse, 2006.
    [2] V. Barbu, Stabilization of Navier-Stokes Flows, London: Springer, 2011. doi: 10.1007/978-0-85729-043-4.
    [3] P. Benner and J. Heiland, LQG-Balanced Truncation low-order controller for stabilization of laminar flows, In R. King, editor, Active Flow and Combustion Control 2014, volume 127 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pages 365–379. Springer, Berlin, (2015). doi: 10.1007/978-3-319-11967-0_22.
    [4] P. Benner and J. Heiland, Robust stabilization of laminar flows in varying flow regimes, IFAC-PapersOnLine, 49 (2016), 31–36. 2nd IFAC Workshop on Control of Systems Governed by Partial Differential Equations. doi: 10.1016/j.ifacol.2016.07.414.
    [5] P. Benner and J. Heiland, Convergence of approximations to Riccati-based boundary-feedback stabilization of laminar flows, IFAC-PapersOnLine, 50 (2017), 12296–12300. 20th IFAC World Congress. doi: 10.1016/j.ifacol.2017.08.2476.
    [6] P. Benner, J. Heiland and S. W. R. Werner, Robust controller versus numerical model uncertainties for stabilization of Navier-Stokes equations, IFAC-PapersOnLine 52 (2019), 25–29. 3rd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE. doi: 10.1016/j.ifacol.2019.08.005.
    [7] A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite-Dimensional Systems, Birkhäuser, Basel, Switzerland, 2007. doi: 10.1007/978-0-8176-4581-6.
    [8] R. F. Curtain, Robust stabilizability of normalized coprime factors: The infinite-dimensional case, Internat. J. Control, 51 (1990), 1173-1190.  doi: 10.1080/00207179008934125.
    [9] R. F. Curtain, Model reduction for control design for distributed parameter systems, In R. Smith and M. Demetriou, editors, Research Directions in Distributed Parameter Systems, pages 95–121. SIAM, Philadelphia, PA, (2003). doi: 10.1137/1.9780898717525.ch4.
    [10] R. F. Curtain, A robust LQG-controller design for DPS, Internat. J. Control, 79 (2006), 162-170.  doi: 10.1080/00207170500512985.
    [11] R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, volume 21 of Texts in Applied Mathematics. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.
    [12] S. DharmattiJ.-P. Raymond and L. Thevenet, ${H}^\infty$ feedback boundary stabilization of two-dimensional Navier-Stokes equations, SIAM J. Cont. Optim., 49 (2011), 2318-2348.  doi: 10.1137/100782607.
    [13] J. Doyle, Guaranteed margins for LQG regulators, IEEE Trans. Automat. Control, 23 (1978), 756–757. doi: 10.1109/TAC.1978.1101812.
    [14] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer, Berlin, Germany, 1986. doi: 10.1007/978-3-642-61623-5.
    [15] B.-Z. Guo and X. Zhang, The regularity of the wave equation with partial Dirichlet control and colocated observation, SIAM J. Control Optim., 44 (2005), 1598-1613.  doi: 10.1137/040610702.
    [16] X. HeW. Hu and Y. Zhang, Observer-based feedback boundary stabilization of the Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg., 339 (2018), 542-566.  doi: 10.1016/j.cma.2018.05.008.
    [17] L. S. Hou and S. S. Ravindran, A penalized Neumann control approach for solving an optimal Dirichlet control problem for the Navier–Stokes equations, SIAM J. Cont. Optim., 36 (1998), 1795–1814. doi: 10.1137/S0363012996304870.
    [18] K. Ito, Strong convergence and convergence rates of approximationg solutions for algebraic Riccati equations in Hilbert spaces, In Distributed Parameter Systems, Proc. 3rd Int. Conf., Vorau/Austria, (1987), 153–166. doi: 10.1007/BFb0041988.
    [19] V. Maz'ya and J. Rossmann, Mixed boundary value problems for the stationary Navier-Stokes system in polyhedral domains, Arch. Rational Mech. Anal., 194 (2009), 669-712.  doi: 10.1007/s00205-008-0171-z.
    [20] D. C. McFarlane and K. Glover, Robust Controller Design Using Normalized Coprime Factor Plant Descriptions, Lecture Notes in Control and Information Sciences, volume 138. Springer, 1990. doi: 10.1007/BFb0043199.
    [21] J. Nečas, Direct Methods in the Theory of Elliptic Equations, Springer, Berlin, Germany, 2012. doi: 10.1007/978-3-642-10455-8.
    [22] P. A. Nguyen and J.-P. Raymond, Boundary stabilization of the Navier–Stokes equations in the case of mixed boundary conditions, SIAM J. Cont. Optim., 53 (2015), 3006–3039. doi: 10.1137/13091364X.
    [23] M. Orlt and A.-M. Sändig, Regularity of viscous Navier-Stokes flows in nonsmooth domains, In Boundary Value Problems and Integral Equations in Nonsmooth Domains, New York, NY: Marcel Dekker, 167 (1995), 185–201.
    [24] L. Paunonen and D. Phan, Reduced order controller design for robust output regulation, IEEE Trans. Automat. Control, 65 (2020), 2480–2493. doi: 10.1109/TAC.2019.2930185.
    [25] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations., volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York etc., 1983. doi: 10.1007/978-1-4612-5561-1.
    [26] S. S. Ravindran, Stabilization of Navier-Stokes equations by boundary feedback, International Journal of Numerical Analysis and Modeling, 4 (2007), 608–624. Available from: http://www.math.ualberta.ca/ijnam/Volume-4-2007/No-3-07/2007-03-17.pdf.
    [27] J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier–Stokes equations, SIAM J. Cont. Optim., 45 (2006), 790–828. doi: 10.1137/050628726.
    [28] J.-P. Raymond, A family of stabilization problems for the Oseen equations, In K. Kunisch, J. Sprekels, G. Leugering, and F. Tröltzsch, editors, Control of Coupled Partial Differential Equations, pages 269–291, Basel, (2007). Birkhäuser Basel. doi: 10.1007/978-3-7643-7721-2_12.
    [29] J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier–Stokes equations, J. Math. Pures Appl., 87 (2007), 627-669.  doi: 10.1016/j.matpur.2007.04.002.
    [30] T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, Switzerland, 2005. doi: 10.1007/3-7643-7397-0.
    [31] D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach, Trans. Amer. Math. Soc., 300 (1987), 383-431.  doi: 10.2307/2000351.
    [32] M. Schäfer and S. Turek, Benchmark computations of laminar flow around a cylinder. (With support by F. Durst, E. Krause and R. Rannacher), In E. Hirschel, editor, Flow Simulation with High-Performance Computers II. DFG priority research program results 1993-1995, number 52 in Notes Numer. Fluid Mech., pages 547–566. Vieweg, Wiesbaden, (1996). doi: 10.1007/978-3-322-89849-4_39.
    [33] E. D. Sontag, Mathematical Control Theory. Deterministic Finite Dimensional Systems, Springer, New York, NY, 1998. doi: 10.1007/978-1-4612-0577-7.
    [34] O. StaffansWell-Posed Linear Systems, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511543197.
    [35] R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, volume 66., Philadelphia, PA: SIAM, 2 edition, 1995. doi: 10.1137/1.9781611970050.
    [36] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts. Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.
    [37] M. Tucsnak and G. Weiss, Survey paper: Well-posed systems-The LTI case and beyond, Automatica J. IFAC, 50 (2014), 1757-1779.  doi: 10.1016/j.automatica.2014.04.016.
    [38] G. Weiss, Representation of shift-invariant operators on ${L}^ 2$ by ${H}^{\infty}$ transfer functions: An elementary proof, a generalization to ${L}^ p$, and a counterexample for ${L}^{\infty}$, Math. Control Signals Syst., 4 (1991), 193-203.  doi: 10.1007/BF02551266.
  • 加载中



Article Metrics

HTML views(605) PDF downloads(410) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint