doi: 10.3934/mcrf.2021044
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Asymptotic gain results for attractors of semilinear systems

1. 

Fraunhofer Institute for Industrial Mathematics (ITWM), Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

2. 

Kiev National Taras Shevchenko University, 01033 Kiev, Ukraine

3. 

Institute for Mathematics, University of Würzburg, 97074 Würzburg, Germany

* Corresponding author: Jochen Schmid

Received  September 2019 Revised  October 2020 Early access September 2021

Fund Project: This article was recruited by Andrii Mironchenko

We establish asymptotic gain along with input-to-state practical stability results for disturbed semilinear systems w.r.t. the global attractor of the respective undisturbed system. We apply our results to a large class of nonlinear reaction-diffusion equations comprising disturbed Chaffee–Infante equations, for example.

Citation: Jochen Schmid, Oleksiy Kapustyan, Sergey Dashkovskiy. Asymptotic gain results for attractors of semilinear systems. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2021044
References:
[1]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, 2nd edition, Birkhäuser, 2011. doi: 10.1007/978-3-0348-0087-7.  Google Scholar

[2]

J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, 1990.  Google Scholar

[3]

J. Bergh and J. Löfström, Interpolation Spaces, Springer, 1980.  Google Scholar

[4]

V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for reaction-diffusion systems, Topol. Methods Nonlinear Anal., 7 (1996), 49-76.  doi: 10.12775/TMNA.1996.002.  Google Scholar

[5]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, 2002.  Google Scholar

[6]

F. H. ClarkeY. S. Ledyaev and R. J. Stern, Asymptotic stability and smooth Lyapunov functions, J. Differential Equations, 149 (1998), 69-114.  doi: 10.1006/jdeq.1998.3476.  Google Scholar

[7]

D. L. Cohn, Measure Theory, 2nd edition, Birkhäuser, 2013. doi: 10.1007/978-1-4614-6956-8.  Google Scholar

[8]

J. B. Conway, A Course in Functional Analysis, 2nd edition, Springer, 1990.  Google Scholar

[9]

S. DashkovskiyO. Kapustyan and I. Romaniuk, Global attractors of impulsive parabolic inclusions, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1875-1886.  doi: 10.3934/dcdsb.2017111.  Google Scholar

[10]

S. DashkovskiyO. Kapustyan and J. Schmid, A local input-to-state stability result w.r.t. attractors of nonlinear reaction–diffusion equations, Math. Contr. Sign. Syst., 32 (2020), 309-326.  doi: 10.1007/s00498-020-00256-w.  Google Scholar

[11]

S. DashkovskiyO. Kapustyan and J. Schmid, Input-to-state stability results w.r.t. global attractors of semi-linear reaction-diffusion equations, IFAC-PapersOnLine, 53 (2020), 3186-3191.  doi: 10.1016/j.ifacol.2020.12.2536.  Google Scholar

[12]

S. Dashkovskiy and A. Mironchenko, Input-to-state stability of infinite-dimensional control systems, Math. Control Signals Systems, 25 (2013), 1-35.  doi: 10.1007/s00498-012-0090-2.  Google Scholar

[13]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, 2000.  Google Scholar

[14]

N. V. GorbanA. V. KapustyanE. A. Kapustyan and O. V. Khomenko, Strong global attractor for the three-dimensional Navier-Stokes system of equations in unbounded domain of channel type, J. Autom. Inform. Sciences, 47 (2015), 48-59.  doi: 10.1615/JAutomatInfScien.v47.i11.40.  Google Scholar

[15]

N. V. GorbanO. V. KapustyanP. O. Kasyanov and L. S. Paliichuk, On global attractors for autonomous damped wave equation with discontinuous nonlinearity, Solid Mechanics and its Applications, 211 (2014), 221-237.  doi: 10.1007/978-3-319-03146-0_16.  Google Scholar

[16]

B. JacobR. NabiullinJ. R. Partington and F. L. Schwenninger, Infinite-dimensional input-to-state stability and Orlicz spaces, SIAM J. Contr. Optim., 56 (2018), 868-889.  doi: 10.1137/16M1099467.  Google Scholar

[17]

B. Jacob and F. Schwenninger, Input-to-state stability of unbounded bilinear control systems, arXiv: 1811.08470, (2018). Google Scholar

[18]

B. JacobF. L. Schwenninger and H. Zwart, On continuity of solutions for parabolic control systems and input-to-state stability, J. Differential Equations, 266 (2019), 6284-6306.  doi: 10.1016/j.jde.2018.11.004.  Google Scholar

[19]

O. V. KapustyanP. O. Kasyanov and J. Valero, Structure of the global attractor for weak solutions of a reaction-diffusion equation, Appl. Math. Inf. Sci., 9 (2015), 2257-2264.   Google Scholar

[20]

A. V. KapustyanV. S. Melnik and J. Valero, Attractors of multivalued dynamical processes generated by phase-field equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1969-1983.  doi: 10.1142/S0218127403007801.  Google Scholar

[21]

A. V. Kapustyan and J. Valero, On the Kneser property for the complex Ginzburg–Landau equation and the Lotka–Volterra system with diffusion, J. Math. Anal. Appl., 357 (2009), 254-272.  doi: 10.1016/j.jmaa.2009.04.010.  Google Scholar

[22]

I. Karafyllis and M. Krstic, ISS with respect to boundary disturbances for 1-D parabolic PDEs, IEEE Trans. Automat. Control, 61 (2016), 3712-3724.  doi: 10.1109/TAC.2016.2519762.  Google Scholar

[23]

I. Karafyllis and M. Krstic, ISS in different norms for 1-D parabolic PDEs with boundary disturbances, SIAM J. Contr. Optim., 55 (2017), 1716-1751.  doi: 10.1137/16M1073753.  Google Scholar

[24]

Y. LinE. D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability, SIAM J. Contr. Optim., 34 (1996), 124-160.  doi: 10.1137/S0363012993259981.  Google Scholar

[25]

F. Mazenc and C. Prieur, Strict Lyapunov functions for semilinear parabolic partial differential equations, Math. Contr. Rel. Fields, 1 (2011), 231-250.  doi: 10.3934/mcrf.2011.1.231.  Google Scholar

[26]

A. Mironchenko, Criteria for input-to-state practical stability, IEEE Trans. Autom. Contr., 64 (2019), 298-304.  doi: 10.1109/TAC.2018.2824983.  Google Scholar

[27]

A. MironchenkoI. Karafyllis and M. Krstic, Monotonicity methods for input-to-state stability of nonlinear parabolic PDEs with boundary disturbances, SIAM J. Contr. Optim., 57 (2019), 510-532.  doi: 10.1137/17M1161877.  Google Scholar

[28]

A. Mironchenko and C. Prieur, Input-to-state stability of infinite-dimensional systems: Recent results and open questions, SIAM Rev., 62 (2020), 529-614.  doi: 10.1137/19M1291248.  Google Scholar

[29]

A. Mironchenko and F. Wirth, Characterizations of input-to-state stability for infinite-dimensional systems, IEEE Trans. Autom. Contr., 63 (2018), 1692-1707.  doi: 10.1109/tac.2017.2756341.  Google Scholar

[30]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[31] J. C. Robinson, Infinite-Dimensional Dyanamical Systems, Cambridge University Press, 2001.   Google Scholar
[32]

J. Schmid, Weak input-to-state stability: Characterizations and counterexamples, Math. Contr. Sign. Syst., 31 (2019), 433-454.  doi: 10.1007/s00498-019-00248-5.  Google Scholar

[33]

J. Schmid, Well-posedness and stability of non-autonomous semilinear input-output systems, Accepted provisionally in Evol. Equ. Contr. Th., arXiv: 1904.10376. Google Scholar

[34]

J. Schmid, Infinite-time admissibility under compact perturbations, Control Theory of Infinite-Dimensional Systems, 73–82, Oper. Theory Adv. Appl., 277, Linear Oper. Linear Syst., Birkhäuser, Cham, (2020). doi: 10.1007/978-3-030-35898-3_3.  Google Scholar

[35]

J. Schmid and H. Zwart, Stabilization of port-Hamiltonian systems by nonlinear boundary control in the presence of disturbances, Conference proceedings of the 23rd Symposium on Mathematical Theory of Networks and Systems, (2018), 570–575, http://mtns2018.ust.hk/media/files/0144.pdf Google Scholar

[36]

J. SchmidS. DashkovskiyB. Jacob and H. Laasri, Well-posedness of non-autonomous semilinear systems, IFAC-PapersOnLine, 52 (2019), 216-220.  doi: 10.1016/j.ifacol.2019.11.781.  Google Scholar

[37]

J. Schmid and H. Zwart, Stabilization of port-Hamiltonian systems by nonlinear boundary control in the presence of disturbances, ESAIM Contr. Optim. Calc. Var., 27 (2021), paper no. 53, 37 pp. doi: 10.1051/cocv/2021051.  Google Scholar

[38]

F. L. Schwenninger, Input-to-state stability for parabolic boundary control: Linear and semi-linear systems, Control Theory of Infinite-Dimensional Systems, 83–116, Oper. Theory Adv. Appl., 277, Linear Oper. Linear Syst., Birkhäuser, Cham, (2020). doi: 10.1007/978-3-030-35898-3_4.  Google Scholar

[39]

E. D. Sontag and Y. Wang, New characterizations of input-to-state stability, IEEE Trans. Autom. Contr., 41 (1996), 1283-1294.  doi: 10.1109/9.536498.  Google Scholar

[40]

A. Tanwani, C. Prieur and S. Tarbouriech, Disturbance-to-state stabilization and quantized control for linear hyperbolic systems, arXiv: 1703.00302, (2017). Google Scholar

[41]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[42]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[43]

J. Valero and A. V. Kapustyan, On the connectedness and asymptotic behaviour of solutions of reaction-diffusion equations, J. Math. Anal. Appl., 323 (2006), 614-633.  doi: 10.1016/j.jmaa.2005.10.042.  Google Scholar

[44]

J. Zheng and G. Zhu, Input-to-state stability with respect to boundary disturbances for a class of semi-linear parabolic equations, Automatica J. IFAC, 97 (2018), 271-277.  doi: 10.1016/j.automatica.2018.08.007.  Google Scholar

[45]

J. Zheng and G. Zhu, A De Giorgi iteration-based approach for the establishment of ISS properties for Burgers–Equation with boundary and in-domain disturbances, IEEE Trans. Automat. Contr., 64 (2019), 3476-3483.  doi: 10.1109/TAC.2018.2880160.  Google Scholar

[46]

J. Zheng and G. Zhu, A weak maximum principle-based approach for input-to-state stability of nonlinear parabolic PDEs with boundary disturbances, Math. Control Signals Syst., 32 (2020), 157-176.  doi: 10.1007/s00498-020-00258-8.  Google Scholar

show all references

References:
[1]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, 2nd edition, Birkhäuser, 2011. doi: 10.1007/978-3-0348-0087-7.  Google Scholar

[2]

J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, 1990.  Google Scholar

[3]

J. Bergh and J. Löfström, Interpolation Spaces, Springer, 1980.  Google Scholar

[4]

V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for reaction-diffusion systems, Topol. Methods Nonlinear Anal., 7 (1996), 49-76.  doi: 10.12775/TMNA.1996.002.  Google Scholar

[5]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, 2002.  Google Scholar

[6]

F. H. ClarkeY. S. Ledyaev and R. J. Stern, Asymptotic stability and smooth Lyapunov functions, J. Differential Equations, 149 (1998), 69-114.  doi: 10.1006/jdeq.1998.3476.  Google Scholar

[7]

D. L. Cohn, Measure Theory, 2nd edition, Birkhäuser, 2013. doi: 10.1007/978-1-4614-6956-8.  Google Scholar

[8]

J. B. Conway, A Course in Functional Analysis, 2nd edition, Springer, 1990.  Google Scholar

[9]

S. DashkovskiyO. Kapustyan and I. Romaniuk, Global attractors of impulsive parabolic inclusions, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1875-1886.  doi: 10.3934/dcdsb.2017111.  Google Scholar

[10]

S. DashkovskiyO. Kapustyan and J. Schmid, A local input-to-state stability result w.r.t. attractors of nonlinear reaction–diffusion equations, Math. Contr. Sign. Syst., 32 (2020), 309-326.  doi: 10.1007/s00498-020-00256-w.  Google Scholar

[11]

S. DashkovskiyO. Kapustyan and J. Schmid, Input-to-state stability results w.r.t. global attractors of semi-linear reaction-diffusion equations, IFAC-PapersOnLine, 53 (2020), 3186-3191.  doi: 10.1016/j.ifacol.2020.12.2536.  Google Scholar

[12]

S. Dashkovskiy and A. Mironchenko, Input-to-state stability of infinite-dimensional control systems, Math. Control Signals Systems, 25 (2013), 1-35.  doi: 10.1007/s00498-012-0090-2.  Google Scholar

[13]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, 2000.  Google Scholar

[14]

N. V. GorbanA. V. KapustyanE. A. Kapustyan and O. V. Khomenko, Strong global attractor for the three-dimensional Navier-Stokes system of equations in unbounded domain of channel type, J. Autom. Inform. Sciences, 47 (2015), 48-59.  doi: 10.1615/JAutomatInfScien.v47.i11.40.  Google Scholar

[15]

N. V. GorbanO. V. KapustyanP. O. Kasyanov and L. S. Paliichuk, On global attractors for autonomous damped wave equation with discontinuous nonlinearity, Solid Mechanics and its Applications, 211 (2014), 221-237.  doi: 10.1007/978-3-319-03146-0_16.  Google Scholar

[16]

B. JacobR. NabiullinJ. R. Partington and F. L. Schwenninger, Infinite-dimensional input-to-state stability and Orlicz spaces, SIAM J. Contr. Optim., 56 (2018), 868-889.  doi: 10.1137/16M1099467.  Google Scholar

[17]

B. Jacob and F. Schwenninger, Input-to-state stability of unbounded bilinear control systems, arXiv: 1811.08470, (2018). Google Scholar

[18]

B. JacobF. L. Schwenninger and H. Zwart, On continuity of solutions for parabolic control systems and input-to-state stability, J. Differential Equations, 266 (2019), 6284-6306.  doi: 10.1016/j.jde.2018.11.004.  Google Scholar

[19]

O. V. KapustyanP. O. Kasyanov and J. Valero, Structure of the global attractor for weak solutions of a reaction-diffusion equation, Appl. Math. Inf. Sci., 9 (2015), 2257-2264.   Google Scholar

[20]

A. V. KapustyanV. S. Melnik and J. Valero, Attractors of multivalued dynamical processes generated by phase-field equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1969-1983.  doi: 10.1142/S0218127403007801.  Google Scholar

[21]

A. V. Kapustyan and J. Valero, On the Kneser property for the complex Ginzburg–Landau equation and the Lotka–Volterra system with diffusion, J. Math. Anal. Appl., 357 (2009), 254-272.  doi: 10.1016/j.jmaa.2009.04.010.  Google Scholar

[22]

I. Karafyllis and M. Krstic, ISS with respect to boundary disturbances for 1-D parabolic PDEs, IEEE Trans. Automat. Control, 61 (2016), 3712-3724.  doi: 10.1109/TAC.2016.2519762.  Google Scholar

[23]

I. Karafyllis and M. Krstic, ISS in different norms for 1-D parabolic PDEs with boundary disturbances, SIAM J. Contr. Optim., 55 (2017), 1716-1751.  doi: 10.1137/16M1073753.  Google Scholar

[24]

Y. LinE. D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability, SIAM J. Contr. Optim., 34 (1996), 124-160.  doi: 10.1137/S0363012993259981.  Google Scholar

[25]

F. Mazenc and C. Prieur, Strict Lyapunov functions for semilinear parabolic partial differential equations, Math. Contr. Rel. Fields, 1 (2011), 231-250.  doi: 10.3934/mcrf.2011.1.231.  Google Scholar

[26]

A. Mironchenko, Criteria for input-to-state practical stability, IEEE Trans. Autom. Contr., 64 (2019), 298-304.  doi: 10.1109/TAC.2018.2824983.  Google Scholar

[27]

A. MironchenkoI. Karafyllis and M. Krstic, Monotonicity methods for input-to-state stability of nonlinear parabolic PDEs with boundary disturbances, SIAM J. Contr. Optim., 57 (2019), 510-532.  doi: 10.1137/17M1161877.  Google Scholar

[28]

A. Mironchenko and C. Prieur, Input-to-state stability of infinite-dimensional systems: Recent results and open questions, SIAM Rev., 62 (2020), 529-614.  doi: 10.1137/19M1291248.  Google Scholar

[29]

A. Mironchenko and F. Wirth, Characterizations of input-to-state stability for infinite-dimensional systems, IEEE Trans. Autom. Contr., 63 (2018), 1692-1707.  doi: 10.1109/tac.2017.2756341.  Google Scholar

[30]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[31] J. C. Robinson, Infinite-Dimensional Dyanamical Systems, Cambridge University Press, 2001.   Google Scholar
[32]

J. Schmid, Weak input-to-state stability: Characterizations and counterexamples, Math. Contr. Sign. Syst., 31 (2019), 433-454.  doi: 10.1007/s00498-019-00248-5.  Google Scholar

[33]

J. Schmid, Well-posedness and stability of non-autonomous semilinear input-output systems, Accepted provisionally in Evol. Equ. Contr. Th., arXiv: 1904.10376. Google Scholar

[34]

J. Schmid, Infinite-time admissibility under compact perturbations, Control Theory of Infinite-Dimensional Systems, 73–82, Oper. Theory Adv. Appl., 277, Linear Oper. Linear Syst., Birkhäuser, Cham, (2020). doi: 10.1007/978-3-030-35898-3_3.  Google Scholar

[35]

J. Schmid and H. Zwart, Stabilization of port-Hamiltonian systems by nonlinear boundary control in the presence of disturbances, Conference proceedings of the 23rd Symposium on Mathematical Theory of Networks and Systems, (2018), 570–575, http://mtns2018.ust.hk/media/files/0144.pdf Google Scholar

[36]

J. SchmidS. DashkovskiyB. Jacob and H. Laasri, Well-posedness of non-autonomous semilinear systems, IFAC-PapersOnLine, 52 (2019), 216-220.  doi: 10.1016/j.ifacol.2019.11.781.  Google Scholar

[37]

J. Schmid and H. Zwart, Stabilization of port-Hamiltonian systems by nonlinear boundary control in the presence of disturbances, ESAIM Contr. Optim. Calc. Var., 27 (2021), paper no. 53, 37 pp. doi: 10.1051/cocv/2021051.  Google Scholar

[38]

F. L. Schwenninger, Input-to-state stability for parabolic boundary control: Linear and semi-linear systems, Control Theory of Infinite-Dimensional Systems, 83–116, Oper. Theory Adv. Appl., 277, Linear Oper. Linear Syst., Birkhäuser, Cham, (2020). doi: 10.1007/978-3-030-35898-3_4.  Google Scholar

[39]

E. D. Sontag and Y. Wang, New characterizations of input-to-state stability, IEEE Trans. Autom. Contr., 41 (1996), 1283-1294.  doi: 10.1109/9.536498.  Google Scholar

[40]

A. Tanwani, C. Prieur and S. Tarbouriech, Disturbance-to-state stabilization and quantized control for linear hyperbolic systems, arXiv: 1703.00302, (2017). Google Scholar

[41]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[42]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[43]

J. Valero and A. V. Kapustyan, On the connectedness and asymptotic behaviour of solutions of reaction-diffusion equations, J. Math. Anal. Appl., 323 (2006), 614-633.  doi: 10.1016/j.jmaa.2005.10.042.  Google Scholar

[44]

J. Zheng and G. Zhu, Input-to-state stability with respect to boundary disturbances for a class of semi-linear parabolic equations, Automatica J. IFAC, 97 (2018), 271-277.  doi: 10.1016/j.automatica.2018.08.007.  Google Scholar

[45]

J. Zheng and G. Zhu, A De Giorgi iteration-based approach for the establishment of ISS properties for Burgers–Equation with boundary and in-domain disturbances, IEEE Trans. Automat. Contr., 64 (2019), 3476-3483.  doi: 10.1109/TAC.2018.2880160.  Google Scholar

[46]

J. Zheng and G. Zhu, A weak maximum principle-based approach for input-to-state stability of nonlinear parabolic PDEs with boundary disturbances, Math. Control Signals Syst., 32 (2020), 157-176.  doi: 10.1007/s00498-020-00258-8.  Google Scholar

[1]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[2]

Andrii Mironchenko, Hiroshi Ito. Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions. Mathematical Control & Related Fields, 2016, 6 (3) : 447-466. doi: 10.3934/mcrf.2016011

[3]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891

[4]

Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 841-857. doi: 10.3934/dcdsb.2019192

[5]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[6]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001

[7]

Wei Feng, C. V. Pao, Xin Lu. Global attractors of reaction-diffusion systems modeling food chain populations with delays. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1463-1478. doi: 10.3934/cpaa.2011.10.1463

[8]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regularity of global attractors for reaction-diffusion systems with no more than quadratic growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1899-1908. doi: 10.3934/dcdsb.2017113

[9]

Alexey Cheskidov, Songsong Lu. The existence and the structure of uniform global attractors for nonautonomous Reaction-Diffusion systems without uniqueness. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 55-66. doi: 10.3934/dcdss.2009.2.55

[10]

Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

[11]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[12]

Yuncheng You. Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 301-333. doi: 10.3934/dcds.2014.34.301

[13]

Wei Feng, Xin Lu. Global stability in a class of reaction-diffusion systems with time-varying delays. Conference Publications, 1998, 1998 (Special) : 253-261. doi: 10.3934/proc.1998.1998.253

[14]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[15]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[16]

Yuncheng You. Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1415-1445. doi: 10.3934/cpaa.2011.10.1415

[17]

Didier Georges. Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks & Heterogeneous Media, 2009, 4 (2) : 267-285. doi: 10.3934/nhm.2009.4.267

[18]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[19]

Wei Feng, Xin Lu. Global periodicity in a class of reaction-diffusion systems with time delays. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 69-78. doi: 10.3934/dcdsb.2003.3.69

[20]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

2020 Impact Factor: 1.284

Metrics

  • PDF downloads (60)
  • HTML views (94)
  • Cited by (0)

[Back to Top]