doi: 10.3934/mcrf.2021049
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Continuity with respect to the speed for optimal ship forms based on Michell's formula

Laboratoire de Mathématiques et Applications, Université de Poitiers, CNRS, F-86073 Poitiers, France

* Corresponding author: M. Pierre

Received  June 2020 Revised  July 2021 Early access October 2021

Fund Project: This works benefited from the support of the project OFHYS of the CNRS 80|prime 2019 initiative.

We consider a ship hull design problem based on Michell's wave resistance. The half hull is represented by a nonnegative function and we seek the function whose domain of definition has a given area and which minimizes the total resistance for a given speed and a given volume. We show that the optimal hull depends only on two parameters without dimension, the viscous drag coefficient and the Froude number of the area of the support. We prove that, up to uniqueness, the optimal hull depends continuously on these two parameters. Moreover, the contribution of Michell's wave resistance vanishes as either the Froude number or the drag coefficient goes to infinity. Numerical simulations confirm the theoretical results for large Froude numbers. For Froude numbers typically smaller than $ 1 $, the famous bulbous bow is numerically recovered. For intermediate Froude numbers, a "sinking" phenomenon occurs. It can be related to the nonexistence of a minimizer.

Citation: Julien Dambrine, Morgan Pierre. Continuity with respect to the speed for optimal ship forms based on Michell's formula. Mathematical Control and Related Fields, doi: 10.3934/mcrf.2021049
References:
[1]

G. Allaire, Conception Optimale De Structures, vol. 58 of Mathématiques & Applications, Springer-Verlag, Berlin, 2007.

[2]

G. Allaire, C. Dapogny and F. Jouve, Shape and topology optimization, Geometric Partial Differential Equations. Part II, Handb. Numer. Anal., Elsevier/North-Holland, Amsterdam, 22 2021, 1–132. doi: 10.1016/bs.hna.2020.10.004.

[3]

G. Allaire and O. Pantz, Structural optimization with FreeFem++, Struct. Multidiscip. Optim., 32 (2006), 173-181.  doi: 10.1007/s00158-006-0017-y.

[4]

G. P. BenhamJ. P. BoucherR. LabbéM. Benzaquen and C. Clanet, Wave drag on asymmetric bodies, J. Fluid Mech., 878 (2019), 147-168.  doi: 10.1017/jfm.2019.638.

[5]

L. Birk, Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion, Wiley, 2019. doi: 10.1002/9781119191575.

[6]

J.-P. BoucherR. LabbéC. Clanet and M. Benzaquen, Thin or bulky: Optimal aspect ratios for ship hulls, Phys. Rev. Fluids, 3 (2018), 074802.  doi: 10.1103/PhysRevFluids.3.074802.

[7] A. Braides, $\Gamma$-Convergence for Beginners, vol. 22 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2002.  doi: 10.1093/acprof:oso/9780198507840.001.0001.
[8]

L. BrascoG. De Philippis and B. Velichkov, Faber-Krahn inequalities in sharp quantitative form, Duke Math. J., 164 (2015), 1777-1831.  doi: 10.1215/00127094-3120167.

[9]

H. Brezis, Analyse Fonctionnelle, Collection Mathématiques Appliquées Pour la Maîtrise, Masson, Paris, 1983.

[10]

D. Bucur, Existence results, In Shape Optimization and Spectral Theory, De Gruyter Open, Warsaw, (2017), 13–28. doi: 10.1515/9783110550887-002.

[11]

D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations and Their Applications, 65, Birkhäuser Boston, Inc., Boston, MA, 2005.

[12]

M. Burger, A framework for the construction of level set methods for shape optimization and reconstruction, Interfaces Free Bound., 5 (2003), 301-329.  doi: 10.4171/IFB/81.

[13]

G. Buttazzo, A survey on the Newton problem of optimal profiles, In Variational Analysis and Aerospace Engineering, Springer Optim. Appl., Springer, New York, 33 (2009), 33–48. doi: 10.1007/978-0-387-95857-6_3.

[14]

G. Buttazzo and B. Kawohl, On Newton's problem of minimal resistance, Math. Intelligencer, 15 (1993), 7-12.  doi: 10.1007/BF03024318.

[15]

S. M. CalisalO. Goren and D. B. Danisman, Resistance reduction by increased beam for displacement type ships, J. Ship. Res., 46 (2002), 208-213.  doi: 10.5957/jsr.2002.46.3.208.

[16]

J. DambrineE. Noviani and M. Pierre, Rankine-type cylinders having zero wave resistance in infinitely deep flows, IMA J. Appl. Math., 85 (2020), 343-364.  doi: 10.1093/imamat/hxaa008.

[17]

J. Dambrine and M. Pierre, Regularity of optimal ship forms based on Michell's wave resistance, Appl. Math. Optim., 82 (2020), 23-62.  doi: 10.1007/s00245-018-9490-0.

[18]

J. DambrineM. Pierre and G. Rousseaux, A theoretical and numerical determination of optimal ship forms based on Michell's wave resistance, ESAIM Control Optim. Calc. Var., 22 (2016), 88-111.  doi: 10.1051/cocv/2014067.

[19]

C. DapognyP. FreyF. Omnès and Y. Privat, Geometrical shape optimization in fluid mechanics using FreeFem++, Struct. Multidiscip. Optim., 58 (2018), 2761-2788.  doi: 10.1007/s00158-018-2023-2.

[20]

L. D. Ferreiro, The social history of the bulbous bow, Technology and Culture, 52 (2011), 335-359.  doi: 10.1353/tech.2011.0055.

[21]

F. de Gournay, Velocity extension for the level-set method and multiple eigenvalues in shape optimization, SIAM J. Control Optim., 45 (2006), 343-367.  doi: 10.1137/050624108.

[22]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[23]

O. GorenS. Calisal and D. B. Danisman, Mathematical programming basis for ship resistance reduction through the optimization of design waterline, J. Mar. Sci. Technol., 22 (2017), 772-783.  doi: 10.1007/s00773-017-0447-9.

[24]

A. S. Gotman, The comperative criterion in deciding on the ship hull form with least wave resistance, In Proceedings Colloquium EUROMECH 374, (1998), 277–284.

[25]

A. S. Gotman, Study of Michell's integral and influence of viscosity and ship hull form on wave resistance, Oceanic Engineering International, 6 (2002), 74-115. 

[26]

A. S. Gotman, Navigating the wake of past efforts, Journal of Ocean Technology, 2 (2007), 74-96. 

[27]

F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.

[28]

A. Henrot and M. Pierre, About critical points of the energy in an electromagnetic shaping problem, In Boundary Control and Boundary Variation (Sophia-Antipolis, 1990), Lect. Notes Control Inf. Sci., Springer, Berlin, 178 (1992), 238–252. doi: 10.1007/BFb0006699.

[29]

A. Henrot and M. Pierre, Variation et Optimisation de Formes, vol. 48 of Mathématiques & Applications, Springer, Berlin, 2005. doi: 10.1007/3-540-37689-5.

[30]

C.-C. Hsiung, Optimal ship forms for minimum wave resistance, J. Ship Res., 25 (1981), 95-116.  doi: 10.5957/jsr.1981.25.2.95.

[31]

C.-C. Hsiung and S. Dong, Optimal ship forms for minimum total resistance, J. Ship Res., 28 (1984), 163-172.  doi: 10.5957/jsr.1984.28.3.163.

[32]

A. A. Kostyukov, Theory of Ship Waves and Wave Resistance, Effective Communications Inc., Iowa City, Iowa, 1968.

[33]

M. G. Krein and V. G. Sizov, On the form of a ship of minimum total resistance (in Russian), Unpublished, 1960

[34]

J. Lamboley and M. Pierre, Regularity of optimal spectral domains, In Shape Optimization and Spectral Theory, De Gruyter Open, Warsaw, (2017), 29–77. doi: 10.1515/9783110550887-003.

[35]

Z. Lian-en, Optimal ship forms for minimal total resistance in shallow water, Schriftenreihe Schiffbau, 445 (1984), 1-60. 

[36]

W. C. Lin, W. C. Webster and J. V. Wehausen, Ships of Minimum Total Resistance, Technical Report No. NA-63-7, Institute of Engineering Research, University of California at Berkeley, 1963.

[37] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. 
[38]

J. P. Michalski, A. Pramila and S. Virtanen, Creation of ship body form with minimum theoretical resistance using finite element method, In Numerical Techniques for Engineering Analysis and Design, Springer Netherlands, (1987), 263–270. doi: 10.1007/978-94-009-3653-9_30.

[39]

J. H. Michell, The wave resistance of a ship, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45 (1898), 106-123.  doi: 10.1080/14786449808621111.

[40]

F. C. Michelsen, Wave Resistance Solution of Michell's Integral for Polynomial Ship Forms, PhD thesis, University of Michigan, 1960.

[41]

F. Murat and J. Simon, Sur le contrôle par un domaine géométrique, Publication du Laboratoire d'Analyse Numérique de l'Université Paris VI, 222 pp.

[42]

V. G. Sizov, The seminar on ship hydrodynamics, organized by Professor M. G. Krein, In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Oper. Theory Adv. Appl., Birkhäuser, Basel, 117 (2000), 9–20.

[43]

J. Sokoƚowski and J.-P. Zolésio, Introduction to Shape Optimization, Springer Series in Computational Mathematics, 16, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58106-9.

[44] R. Temam and A. Miranville, Mathematical Modeling in Continuum Mechanics, 2$^nd$ edition, Cambridge University Press, Cambridge, 2005.  doi: 10.1017/CBO9780511755422.
[45]

E. Tuck and L. Lazauskas, Drag on a ship and Michell's integral, In Proceedings of the XXII International Congress of Theoretical and Applied Mechanics, Adelaide, Australia, 2008.

[46]

E. O. Tuck, The wave resistance formula of J. H. Michell (1898) and its significance to recent research in ship hydrodynamics, J. Austral. Math. Soc. Ser. B, 30 (1989), 365-377.  doi: 10.1017/S0334270000006329.

[47]

E. O. Tuck, L. Lazauskas and D. C. Scullen, Sea Wave Pattern Evaluation - Part 1 Report: Primary Code and Test Results (surface vessels), Technical Report, Applied Mathematics Department, The University of Adelaide, Australia, 1999.

[48]

E. O. Tuck, D. C. Scullen and L. Lazauskas, Ship-wave patterns in the spirit of Michell, In IUTAM Symposium on Free Surface Flows, Fluid Mechanics and Its Applications, (eds. A. C. King and Y. D. Shikhmurzaev), Springer, Dordrecht, 62 (2001), 311–318. doi: 10.1007/978-94-010-0796-2_38.

[49]

J. V. Wehausen, The wave resistance of ships, Advances in Applied Mechanics, Elsevier, 13 (1973), 93-245.  doi: 10.1016/S0065-2156(08)70144-3.

show all references

References:
[1]

G. Allaire, Conception Optimale De Structures, vol. 58 of Mathématiques & Applications, Springer-Verlag, Berlin, 2007.

[2]

G. Allaire, C. Dapogny and F. Jouve, Shape and topology optimization, Geometric Partial Differential Equations. Part II, Handb. Numer. Anal., Elsevier/North-Holland, Amsterdam, 22 2021, 1–132. doi: 10.1016/bs.hna.2020.10.004.

[3]

G. Allaire and O. Pantz, Structural optimization with FreeFem++, Struct. Multidiscip. Optim., 32 (2006), 173-181.  doi: 10.1007/s00158-006-0017-y.

[4]

G. P. BenhamJ. P. BoucherR. LabbéM. Benzaquen and C. Clanet, Wave drag on asymmetric bodies, J. Fluid Mech., 878 (2019), 147-168.  doi: 10.1017/jfm.2019.638.

[5]

L. Birk, Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion, Wiley, 2019. doi: 10.1002/9781119191575.

[6]

J.-P. BoucherR. LabbéC. Clanet and M. Benzaquen, Thin or bulky: Optimal aspect ratios for ship hulls, Phys. Rev. Fluids, 3 (2018), 074802.  doi: 10.1103/PhysRevFluids.3.074802.

[7] A. Braides, $\Gamma$-Convergence for Beginners, vol. 22 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2002.  doi: 10.1093/acprof:oso/9780198507840.001.0001.
[8]

L. BrascoG. De Philippis and B. Velichkov, Faber-Krahn inequalities in sharp quantitative form, Duke Math. J., 164 (2015), 1777-1831.  doi: 10.1215/00127094-3120167.

[9]

H. Brezis, Analyse Fonctionnelle, Collection Mathématiques Appliquées Pour la Maîtrise, Masson, Paris, 1983.

[10]

D. Bucur, Existence results, In Shape Optimization and Spectral Theory, De Gruyter Open, Warsaw, (2017), 13–28. doi: 10.1515/9783110550887-002.

[11]

D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations and Their Applications, 65, Birkhäuser Boston, Inc., Boston, MA, 2005.

[12]

M. Burger, A framework for the construction of level set methods for shape optimization and reconstruction, Interfaces Free Bound., 5 (2003), 301-329.  doi: 10.4171/IFB/81.

[13]

G. Buttazzo, A survey on the Newton problem of optimal profiles, In Variational Analysis and Aerospace Engineering, Springer Optim. Appl., Springer, New York, 33 (2009), 33–48. doi: 10.1007/978-0-387-95857-6_3.

[14]

G. Buttazzo and B. Kawohl, On Newton's problem of minimal resistance, Math. Intelligencer, 15 (1993), 7-12.  doi: 10.1007/BF03024318.

[15]

S. M. CalisalO. Goren and D. B. Danisman, Resistance reduction by increased beam for displacement type ships, J. Ship. Res., 46 (2002), 208-213.  doi: 10.5957/jsr.2002.46.3.208.

[16]

J. DambrineE. Noviani and M. Pierre, Rankine-type cylinders having zero wave resistance in infinitely deep flows, IMA J. Appl. Math., 85 (2020), 343-364.  doi: 10.1093/imamat/hxaa008.

[17]

J. Dambrine and M. Pierre, Regularity of optimal ship forms based on Michell's wave resistance, Appl. Math. Optim., 82 (2020), 23-62.  doi: 10.1007/s00245-018-9490-0.

[18]

J. DambrineM. Pierre and G. Rousseaux, A theoretical and numerical determination of optimal ship forms based on Michell's wave resistance, ESAIM Control Optim. Calc. Var., 22 (2016), 88-111.  doi: 10.1051/cocv/2014067.

[19]

C. DapognyP. FreyF. Omnès and Y. Privat, Geometrical shape optimization in fluid mechanics using FreeFem++, Struct. Multidiscip. Optim., 58 (2018), 2761-2788.  doi: 10.1007/s00158-018-2023-2.

[20]

L. D. Ferreiro, The social history of the bulbous bow, Technology and Culture, 52 (2011), 335-359.  doi: 10.1353/tech.2011.0055.

[21]

F. de Gournay, Velocity extension for the level-set method and multiple eigenvalues in shape optimization, SIAM J. Control Optim., 45 (2006), 343-367.  doi: 10.1137/050624108.

[22]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[23]

O. GorenS. Calisal and D. B. Danisman, Mathematical programming basis for ship resistance reduction through the optimization of design waterline, J. Mar. Sci. Technol., 22 (2017), 772-783.  doi: 10.1007/s00773-017-0447-9.

[24]

A. S. Gotman, The comperative criterion in deciding on the ship hull form with least wave resistance, In Proceedings Colloquium EUROMECH 374, (1998), 277–284.

[25]

A. S. Gotman, Study of Michell's integral and influence of viscosity and ship hull form on wave resistance, Oceanic Engineering International, 6 (2002), 74-115. 

[26]

A. S. Gotman, Navigating the wake of past efforts, Journal of Ocean Technology, 2 (2007), 74-96. 

[27]

F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.

[28]

A. Henrot and M. Pierre, About critical points of the energy in an electromagnetic shaping problem, In Boundary Control and Boundary Variation (Sophia-Antipolis, 1990), Lect. Notes Control Inf. Sci., Springer, Berlin, 178 (1992), 238–252. doi: 10.1007/BFb0006699.

[29]

A. Henrot and M. Pierre, Variation et Optimisation de Formes, vol. 48 of Mathématiques & Applications, Springer, Berlin, 2005. doi: 10.1007/3-540-37689-5.

[30]

C.-C. Hsiung, Optimal ship forms for minimum wave resistance, J. Ship Res., 25 (1981), 95-116.  doi: 10.5957/jsr.1981.25.2.95.

[31]

C.-C. Hsiung and S. Dong, Optimal ship forms for minimum total resistance, J. Ship Res., 28 (1984), 163-172.  doi: 10.5957/jsr.1984.28.3.163.

[32]

A. A. Kostyukov, Theory of Ship Waves and Wave Resistance, Effective Communications Inc., Iowa City, Iowa, 1968.

[33]

M. G. Krein and V. G. Sizov, On the form of a ship of minimum total resistance (in Russian), Unpublished, 1960

[34]

J. Lamboley and M. Pierre, Regularity of optimal spectral domains, In Shape Optimization and Spectral Theory, De Gruyter Open, Warsaw, (2017), 29–77. doi: 10.1515/9783110550887-003.

[35]

Z. Lian-en, Optimal ship forms for minimal total resistance in shallow water, Schriftenreihe Schiffbau, 445 (1984), 1-60. 

[36]

W. C. Lin, W. C. Webster and J. V. Wehausen, Ships of Minimum Total Resistance, Technical Report No. NA-63-7, Institute of Engineering Research, University of California at Berkeley, 1963.

[37] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. 
[38]

J. P. Michalski, A. Pramila and S. Virtanen, Creation of ship body form with minimum theoretical resistance using finite element method, In Numerical Techniques for Engineering Analysis and Design, Springer Netherlands, (1987), 263–270. doi: 10.1007/978-94-009-3653-9_30.

[39]

J. H. Michell, The wave resistance of a ship, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45 (1898), 106-123.  doi: 10.1080/14786449808621111.

[40]

F. C. Michelsen, Wave Resistance Solution of Michell's Integral for Polynomial Ship Forms, PhD thesis, University of Michigan, 1960.

[41]

F. Murat and J. Simon, Sur le contrôle par un domaine géométrique, Publication du Laboratoire d'Analyse Numérique de l'Université Paris VI, 222 pp.

[42]

V. G. Sizov, The seminar on ship hydrodynamics, organized by Professor M. G. Krein, In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Oper. Theory Adv. Appl., Birkhäuser, Basel, 117 (2000), 9–20.

[43]

J. Sokoƚowski and J.-P. Zolésio, Introduction to Shape Optimization, Springer Series in Computational Mathematics, 16, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58106-9.

[44] R. Temam and A. Miranville, Mathematical Modeling in Continuum Mechanics, 2$^nd$ edition, Cambridge University Press, Cambridge, 2005.  doi: 10.1017/CBO9780511755422.
[45]

E. Tuck and L. Lazauskas, Drag on a ship and Michell's integral, In Proceedings of the XXII International Congress of Theoretical and Applied Mechanics, Adelaide, Australia, 2008.

[46]

E. O. Tuck, The wave resistance formula of J. H. Michell (1898) and its significance to recent research in ship hydrodynamics, J. Austral. Math. Soc. Ser. B, 30 (1989), 365-377.  doi: 10.1017/S0334270000006329.

[47]

E. O. Tuck, L. Lazauskas and D. C. Scullen, Sea Wave Pattern Evaluation - Part 1 Report: Primary Code and Test Results (surface vessels), Technical Report, Applied Mathematics Department, The University of Adelaide, Australia, 1999.

[48]

E. O. Tuck, D. C. Scullen and L. Lazauskas, Ship-wave patterns in the spirit of Michell, In IUTAM Symposium on Free Surface Flows, Fluid Mechanics and Its Applications, (eds. A. C. King and Y. D. Shikhmurzaev), Springer, Dordrecht, 62 (2001), 311–318. doi: 10.1007/978-94-010-0796-2_38.

[49]

J. V. Wehausen, The wave resistance of ships, Advances in Applied Mechanics, Elsevier, 13 (1973), 93-245.  doi: 10.1016/S0065-2156(08)70144-3.

Figure 1.  The domain of definition $ \omega $ of the hull $ f $
Figure 2.  Symmetrization $z\mapsto -z$
Figure 13.  $ J^\star $ vs $ Fr $ ($ C_F = 0.01 $)
Figure 14.  $ J^\star $ vs $ Fr $ for three different drag coefficients
Figure 3.  Wigley hull with length $ L = 2 $, draft $ T = 0.5 $ and beam $ B = 0.4 $
Figure 4.  The minimizing sequence of Wigley hulls $ w_{L,T_L,6} $ ($ L = 3 $, $ 4 $ and $ 5 $)
Figure 5.  $ J_{wave}(w_{L,T_L,6}) $ vs. $ L $
Figure 9.  A minimizing sequence for $ Fr = 1.75 $ (sinking case)
Figure 6.  Optimal domain for $ Fr = 0.46 $
Figure 7.  Optimal domains for $ Fr = 0.67 $ (top), $ 0.81 $ (middle) and $ 0.98 $ (bottom)
Figure 8.  Optimal hull for $ Fr = 0.67 $
Figure 10.  Optimal hull built on a half disk for $ Fr = 1.75 $ (3D view of Figure \ref{Fr1p75}-top)
Figure 11.  Optimal domains for $ Fr = 2.45 $ (top), $ 3.15 $ (middle) and $ 4.90 $ (bottom)
Figure 12.  Optimal hull for $ Fr = 4.90 $
Table 1.  Comparison of the area Froude number $ Fr $, the length $ L $ of the optimal domain and the length Froude number $ Fr_L $ ($ a = 1 $)
$ Fr $ 0.34 0.46 0.58 0.67 0.74 0.81 0.89 0.98
$ \sqrt{\pi}L $ 2.82 3.69 4.73 5.12 5.81 6.19 6.43 6.50
$ Fr_L $ 0.27 0.32 0.35 0.39 0.41 0.43 0.47 0.51
$ Fr $ 0.34 0.46 0.58 0.67 0.74 0.81 0.89 0.98
$ \sqrt{\pi}L $ 2.82 3.69 4.73 5.12 5.81 6.19 6.43 6.50
$ Fr_L $ 0.27 0.32 0.35 0.39 0.41 0.43 0.47 0.51
[1]

Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022002

[2]

Augusto Visintin. $ \Gamma $-compactness and $ \Gamma $-stability of the flow of heat-conducting fluids. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2331-2343. doi: 10.3934/dcdss.2022066

[3]

E. Audusse. A multilayer Saint-Venant model: Derivation and numerical validation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 189-214. doi: 10.3934/dcdsb.2005.5.189

[4]

Emmanuel Audusse, Fayssal Benkhaldoun, Jacques Sainte-Marie, Mohammed Seaid. Multilayer Saint-Venant equations over movable beds. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 917-934. doi: 10.3934/dcdsb.2011.15.917

[5]

Georges Bastin, Jean-Michel Coron, Brigitte d'Andréa-Novel. On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Networks and Heterogeneous Media, 2009, 4 (2) : 177-187. doi: 10.3934/nhm.2009.4.177

[6]

Hassen Arfaoui, Faker Ben Belgacem, Henda El Fekih, Jean-Pierre Raymond. Boundary stabilizability of the linearized viscous Saint-Venant system. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 491-511. doi: 10.3934/dcdsb.2011.15.491

[7]

Raina Raj, Vidyottama Jain. Optimization of traffic control in $ MMAP\mathit{[2]}/PH\mathit{[2]}/S$ priority queueing model with $ PH $ retrial times and the preemptive repeat policy. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022044

[8]

Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure and Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033

[9]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021

[10]

Sugata Gangopadhyay, Goutam Paul, Nishant Sinha, Pantelimon Stǎnicǎ. Generalized nonlinearity of $ S$-boxes. Advances in Mathematics of Communications, 2018, 12 (1) : 115-122. doi: 10.3934/amc.2018007

[11]

Rakesh Nandi, Sujit Kumar Samanta, Chesoong Kim. Analysis of $ D $-$ BMAP/G/1 $ queueing system under $ N $-policy and its cost optimization. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3603-3631. doi: 10.3934/jimo.2020135

[12]

Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009

[13]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[14]

Abdeladim El Akri, Lahcen Maniar. Uniform indirect boundary controllability of semi-discrete $ 1 $-$ d $ coupled wave equations. Mathematical Control and Related Fields, 2020, 10 (4) : 669-698. doi: 10.3934/mcrf.2020015

[15]

Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086

[16]

Changliang Zhou, Chunqin Zhou. On the anisotropic Moser-Trudinger inequality for unbounded domains in $ \mathbb R^{n} $. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 847-881. doi: 10.3934/dcds.2020064

[17]

Jean-Frédéric Gerbeau, Benoit Perthame. Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 89-102. doi: 10.3934/dcdsb.2001.1.89

[18]

Marie-Odile Bristeau, Jacques Sainte-Marie. Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 733-759. doi: 10.3934/dcdsb.2008.10.733

[19]

Tadahisa Funaki, Yueyuan Gao, Danielle Hilhorst. Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$-brownian motion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1459-1502. doi: 10.3934/dcdsb.2018159

[20]

Lingyan Cheng, Ruinan Li, Liming Wu. Exponential convergence in the Wasserstein metric $ W_1 $ for one dimensional diffusions. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5131-5148. doi: 10.3934/dcds.2020222

2021 Impact Factor: 1.141

Article outline

Figures and Tables

[Back to Top]