This paper is devoted to analyzing the controllability to rest of the Gurtin-Pipkin model, which is a class of differential equations with memory terms. The goal is not only to derive the state to vanish at some time but also to require the memory term to vanish at the same time, ensuring that the controlled system is controllable to rest. In order to get rid of the influence of memory, the controllability result is obtained by means of the Fourier type approach and the moment theory.
Citation: |
[1] |
S. A. Avdonin and S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, Cambridge, 1995.
![]() ![]() |
[2] |
S. Avdonin and L. Pandolfi, Simultaneous temperature and flux controllability for heat equations with memory, Quart. Appl. Math., 71 (2013), 339-368.
doi: 10.1090/S0033-569X-2012-01287-7.![]() ![]() ![]() |
[3] |
V. Barbu and M. Iannelli, Controllability of the heat equation with memory, Differential Integral Equations, 13 (2000), 1393-1412.
![]() ![]() |
[4] |
A. Belleni-Morante, An integro-differential equation arising from the theory of heat conduction in rigid materials with memory, Boll. Un. Mat. Ital. B, 15 (1978), 470-482.
![]() ![]() |
[5] |
F. W. Chaves-Silva, X. Zhang and E. Zuazua, Controllability of evolution equations with memory, SIAM J. Control Optim., 55 (2017), 2437-2459.
doi: 10.1137/151004239.![]() ![]() ![]() |
[6] |
B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199-208.
doi: 10.1007/BF01596912.![]() ![]() ![]() |
[7] |
X. Fu, J. Yong and X. Zhang, Controllability and observability of a heat equation with hyperbolic memory kernel, J. Differential Equations, 247 (2009), 2395-2439.
doi: 10.1016/j.jde.2009.07.026.![]() ![]() ![]() |
[8] |
S. Guerrero and O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory, ESAIM Control Optim. Calc. Var., 19 (2013), 288-300.
doi: 10.1051/cocv/2012013.![]() ![]() ![]() |
[9] |
M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rat. Mech. Anal., 31 (1968), 113-126.
doi: 10.1007/BF00281373.![]() ![]() ![]() |
[10] |
S. Ivanov and L. Pandolfi, Heat equation with memory: Lack of controllability to rest, J. Math. Anal. Appl., 355 (2009), 1-11.
doi: 10.1016/j.jmaa.2009.01.008.![]() ![]() ![]() |
[11] |
G. Knowles, Some problems in the control of distributed systems, and their numerical solution, SIAM J. Control Optim., 17 (1979), 5-22.
doi: 10.1137/0317002.![]() ![]() ![]() |
[12] |
P. Loreti and V. Komornik, Fourier Series in Control Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2005.
![]() ![]() |
[13] |
P. Loreti, L. Pandolfi and D. Sforza, Boundary controllability and observability of a viscoelastic string, SIAM J. Control Optim., 50 (2012), 820-844.
doi: 10.1137/110827740.![]() ![]() ![]() |
[14] |
Q. Lü, X. Zhang and E. Zuazua, Null controllability for wave equations with memory, J. Math. Pures Appl., 108 (2017), 500-531.
doi: 10.1016/j.matpur.2017.05.001.![]() ![]() ![]() |
[15] |
S. Micu and E. Zuazua, On the controllability of a fractional order parabolic equation, SIAM J. Control. Optim., 44 (2006), 1950-1972.
doi: 10.1137/S036301290444263X.![]() ![]() ![]() |
[16] |
R. K. Miller, Asymptotic stability properties of linear Volterra integrodifferential equations, J. Differential Equations, 10 (1971), 485-506.
doi: 10.1016/0022-0396(71)90008-8.![]() ![]() ![]() |
[17] |
L. Pandolfi, The controllability of the Gurtin-Pipkin equation: A cosine operator approach, Appl. Math. Optim., 52 (2005), 143-165.
doi: 10.1007/s00245-005-0819-0.![]() ![]() ![]() |
[18] |
L. Pandolfi, Riesz systems and moment method in the study of heat equations with memory in one space dimension, Discrete Continuous Dynam. Systems - B, 14 (2010), 1487-1510.
![]() |
[19] |
L. Pandolfi, Distributed Systems with Persistent Memory: Control and Moment Problems, SpringerBriefs in Electrical and Computer Engineering. SpringerBriefs in Control, Automation and Robotics. Springer, Cham, 2014.
doi: 10.1007/978-3-319-12247-2.![]() ![]() ![]() |
[20] |
J. Prüss, Evolutionary Integral Equations and Applications, vol. 87 of Monographs in Mathematics, Birkhäuser Verlag, Basel, 1993.
doi: 10.1007/978-3-0348-8570-6.![]() ![]() ![]() |
[21] |
I. Romanov and A. Shamaev, Noncontrollability to rest of the two-dimensional distributed system governed by the integrodifferential equation, J. Optim. Theory Appl., 170 (2016), 772-782.
doi: 10.1007/s10957-016-0945-7.![]() ![]() ![]() |
[22] |
Q. Tao, H. Gao, B. Zhang and Z. Yao, Approximate controllability of a parabolic integro-differential equation, Math. Meth. Appl. Sci., 37 (2014), 2236-2244.
doi: 10.1002/mma.2970.![]() ![]() ![]() |
[23] |
R. M. Young, An Introduction to Nonharmonic Fourier Series, Applied Mathematics, 93. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980.
![]() ![]() |
[24] |
X. Zhou, Integral-type approximate controllability of linear parabolic integro-differential equations, Systems Control Lett., 105 (2017), 44-47.
doi: 10.1016/j.sysconle.2017.04.007.![]() ![]() ![]() |