[1]
|
T. Akman and B. Karasözen, Variational time discretization methods for optimal control problems governed by diffusion-convection-reaction equations, Comput. Appl. Math., 272 (2014), 41-56.
doi: 10.1016/j.cam.2014.05.002.
|
[2]
|
N. Allahverdi, A. Pozo and E. Zuazua, Numerical aspects of large-time optimal control of Burgers equation, ESAIM Math. Model. Numer. Anal., 50 (2016), 1371-1401.
doi: 10.1051/m2an/2015076.
|
[3]
|
D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742-760.
doi: 10.1137/0719052.
|
[4]
|
G. Chen and S. Collis, Optimal control for Burgers flow using the discontinuous Galerkin method, AIAA Region IV Student Paper Conference, 2003.
|
[5]
|
A. Chertock, A. Kurganov and T. Wu, Operator splitting based central-upwind schemes for the shallow water equations with moving bottom topography, Commun. Math. Sci., 18 (2020), 2149-2168.
doi: 10.4310/CMS.2020.v18.n8.a3.
|
[6]
|
B. Cockburn, An introduction to the discontinuous Galerkin Method for convection-dominated problems, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (Cetraro, 1997), Lecture Notes in Math., 1697 (1998), 151-268.
doi: 10.1007/BFb0096353.
|
[7]
|
J. C. de los Reyes and K. Kunisch, A comparison of algorithms for control constrained optimal control of the Burgers equation, Calcolo, 41 (2004), 203-225.
doi: 10.1007/s10092-004-0092-7.
|
[8]
|
V. Dolejší and M. Feistauer, Discontinuous Galerkin Methods, Analysis and Applications to Compressible Flow. Springer Series in Computational Mathematics, 48. Springer, Cham, 2015.
doi: 10.1007/978-3-319-19267-3.
|
[9]
|
K. T. Elgindy and B. Karasözen, Distributed optimal control of viscous Burgers' equation via a high-order, linearization, integral, nodal discontinuous Gegenbauer-Galerkin method, Optimal Control Appl. Methods, 41 (2020), 253-277.
doi: 10.1002/oca.2541.
|
[10]
|
B. Engquist and S. Osher, One-sided difference approximations for nonlinear conservation laws, Math. Comp., 36 (1981), 321-351.
doi: 10.1090/S0025-5718-1981-0606500-X.
|
[11]
|
L. Failer, Optimal Control of Time-Dependent Nonlinear Fluid-Structure Interaction, PhD thesis, Technical University of Munich, Munich, 2017.
|
[12]
|
M. Feistauer, V. Kučera, K. Najzar and J. Prokopová, Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems, Numer. Math., 117 (2011), 251-288.
doi: 10.1007/s00211-010-0348-x.
|
[13]
|
G. Gassner, A. Winters and D. Kopriva, A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations, Appl. Math. Comput., 272 (2016), 291-308.
doi: 10.1016/j.amc.2015.07.014.
|
[14]
|
J. Greenberg and A. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33 (1996), 1-16.
doi: 10.1137/0733001.
|
[15]
|
J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Texts in Applied Mathematics, 54. Springer, New York, 2008.
doi: 10.1007/978-0-387-72067-8.
|
[16]
|
A. Hiltebrand and S. May, Entropy stable spacetime discontinuous Galerkin methods for the two-dimensional compressible Navier-Stokes equations, Commun. Math. Sci., 16 (2018), 2095-2124.
doi: 10.4310/CMS.2018.v16.n8.a3.
|
[17]
|
A. Hiltebrand and S. Mishra, Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography, Netw. Heterog. Media, 11 (2016), 145-162.
doi: 10.3934/nhm.2016.11.145.
|
[18]
|
H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, 2nd edition, Applied Mathematical Sciences, 152. Springer, Heidelberg, 2015.
doi: 10.1007/978-3-662-47507-2.
|
[19]
|
L. I. Ignat, A. Pozo and E. Zuazua, Large-time asymptotics, vanishing viscosity and numerics for 1-D scalar conservation laws, Math. Comp., 84 (2015), 1633-1662.
doi: 10.1090/S0025-5718-2014-02915-3.
|
[20]
|
K. Kunisch and S. Volkwein, Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition, J. Optim. Theory Appl., 102 (1999), 345-371.
doi: 10.1023/A:1021732508059.
|
[21]
|
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.
doi: 10.1017/CBO9780511791253.
|
[22]
|
D. Leykekhman, Investigation of commutative properties of discontinuous Galerkin methods in PDE constrained optimal control problems, J. Sci. Comput., 53 (2012), 483-511.
doi: 10.1007/s10915-012-9582-y.
|
[23]
|
S. May, Spacetime discontinuous Galerkin methods for solving convection-diffusion systems, ESAIM Math. Model. Numer. Anal., 51 (2017), 1755-1781.
doi: 10.1051/m2an/2017001.
|
[24]
|
S. Noelle, Y. Xing and C.-W. Shu, High-order well-balanced schemes, Numerical methods for Balance Laws, Quad. Mat., Dept. Math., Seconda Univ. Napoli, Caserta, 24 (2009), 1-66.
|
[25]
|
J. Pfefferer, Numerical Analysis for Elliptic Neumann Boundary Control Problems on Polygonal Domains, PhD thesis, Bundeswehr University Munich, Munich, 2014.
|
[26]
|
W. J. Rider and R. B. Lowrie, The use of classical Lax-Friedrichs Riemann solvers with discontinuous Galerkin methods, Internat. J. Numer. Methods Fluids, 40 (2002), 479-486.
doi: 10.1002/fld.334.
|
[27]
|
S. Volkwein, Mesh-Independence of an Augmented Lagrangian-SQP Method in Hilbert Spaces and Control Problems for the Burgers Equation, PhD thesis, Technical University of Berlin, Berlin, 1997.
|
[28]
|
S. Volkwein, Distributed control problems for the Burgers equation, Comput. Optim. Appl., 18 (2001), 115-140.
doi: 10.1023/A:1008770404256.
|
[29]
|
L. Wilcox, G. Stadler, T. Bui-Thanh and O. Ghattas, Discretely exact derivatives for hyperbolic PDE-constrained optimization problems discretized by the discontinuous Galerkin method, J. Sci. Comput., 63 (2015), 138-162.
doi: 10.1007/s10915-014-9890-5.
|
[30]
|
F. Yilmaz and B. Karasözen, Solving optimal control problems for the unsteady Burgers equation in COMSOL Multiphysics, J. Comput. Appl. Math., 235 (2011), 4839-4850.
doi: 10.1016/j.cam.2011.01.002.
|