doi: 10.3934/mcrf.2021055
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Eigenvalues of stochastic Hamiltonian systems with boundary conditions and its application

School of Mathematics, Shandong University, Jinan 250100, China

* Corresponding author: Guangdong Jing

Received  January 2021 Revised  October 2021 Early access December 2021

Fund Project: The first author is supported by NNSFC grant 11871308; The second author is supported by NNSFC grant 11471189, 11871308

In this paper we solve the eigenvalue problem of stochastic Hamiltonian system with boundary conditions. Firstly, we extend the results in Peng [12] from time-invariant case to time-dependent case, proving the existence of a series of eigenvalues $ \{\lambda_m\} $ and construct corresponding eigenfunctions. Moreover, the order of growth for these $ \{\lambda_m\} $ are obtained: $ \lambda_m\sim m^2 $, as $ m\rightarrow +\infty $. As applications, we give an explicit estimation formula about the statistic period of solutions of Forward-Backward SDEs. Besides, by a meticulous example we show the subtle situation in time-dependent case that some eigenvalues appear when the solution of the associated Riccati equation does not blow-up, which does not happen in time-invariant case.

Citation: Guangdong Jing, Penghui Wang. Eigenvalues of stochastic Hamiltonian systems with boundary conditions and its application. Mathematical Control and Related Fields, doi: 10.3934/mcrf.2021055
References:
[1]

F. Antonelli, Backward-forward stochastic differential equations, Ann. Appl. Probab., 3 (1993), 777-793. 

[2]

A. Bensoussan, Lectures on stochastic control, Nonlinear Filtering and Stochastic Control (Cortona, 1981), 1–62, Lecture Notes in Math., 972, Springer, Berlin-New York, 1982.

[3]

J.-M. Bismut, Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44 (1973), 384-404.  doi: 10.1016/0022-247X(73)90066-8.

[4]

F. Delarue, On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case, Stochastic Process. Appl., 99 (2002), 209-286.  doi: 10.1016/S0304-4149(02)00085-6.

[5]

Y. Hu and S. Peng, Solution of forward-backward stochastic differential equations, Probab. Theory Related Fields, 103 (1995), 273-283.  doi: 10.1007/BF01204218.

[6]

G. Jing and P. Wang, A note on "Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions", C. R. Math. Acad. Sci. Paris, 359 (2021), 99-104.  doi: 10.5802/crmath.103.

[7]

J. MaP. Protter and J. Yong, Solving forward-backward stochastic differential equations explicitly – a four step scheme, Probab. Theory Related Fields, 98 (1994), 339-359.  doi: 10.1007/BF01192258.

[8]

J. MaZ. WuD. Zhang and J. Zhang, On well-posedness of forward-backward SDEs – a unified approach, Ann. Appl. Probab., 25 (2015), 2168-2214.  doi: 10.1214/14-AAP1046.

[9]

J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications, , Springer-Verlag, Berlin, 1999.

[10]

E. Pardoux and S. Tang, Forward-backward stochastic differential equations and quasilinear parabolic PDEs, Probab. Theory Related Fields, 114 (1999), 123-150.  doi: 10.1007/s004409970001.

[11]

S. Peng, Backward stochastic differential equations and applications to optimal control, Appl. Math. Optim., 27 (1993), 125-144.  doi: 10.1007/BF01195978.

[12]

S. Peng, Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions, Stochastic Process. Appl., 88 (2000), 259-290.  doi: 10.1016/S0304-4149(00)00005-3.

[13]

S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., 37 (1999), 825-843.  doi: 10.1137/S0363012996313549.

[14]

H. Wang and Z. Wu, Eigenvalues of stochastic Hamiltonian systems driven by Poisson process with boundary conditions, Bound. Value Probl., 2017, Paper No. 164, 20 pp. doi: 10.1186/s13661-017-0896-4.

[15]

J. Yong, Forward-backward stochastic differential equations with mixed initial-terminal conditions, Trans. Amer. Math. Soc., 362 (2010), 1047-1096.  doi: 10.1090/S0002-9947-09-04896-X.

[16]

J. Yong, Linear forward-backward stochastic differential equations, Appl. Math. Optim., 39 (1999), 93-119.  doi: 10.1007/s002459900100.

[17]

J. Yong, Linear forward-backward stochastic differential equations with random coefficients, Probab. Theory Related Fields, 135 (2006), 53-83.  doi: 10.1007/s00440-005-0452-5.

[18]

J. Zhang, Backward Stochastic Differential Equations. From Linear to Fully Nonlinear Theory, Springer, New York, 2017. doi: 10.1007/978-1-4939-7256-2.

[19]

J. Zhang, The wellposedness of FBSDEs, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 927-940.  doi: 10.3934/dcdsb.2006.6.927.

show all references

References:
[1]

F. Antonelli, Backward-forward stochastic differential equations, Ann. Appl. Probab., 3 (1993), 777-793. 

[2]

A. Bensoussan, Lectures on stochastic control, Nonlinear Filtering and Stochastic Control (Cortona, 1981), 1–62, Lecture Notes in Math., 972, Springer, Berlin-New York, 1982.

[3]

J.-M. Bismut, Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44 (1973), 384-404.  doi: 10.1016/0022-247X(73)90066-8.

[4]

F. Delarue, On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case, Stochastic Process. Appl., 99 (2002), 209-286.  doi: 10.1016/S0304-4149(02)00085-6.

[5]

Y. Hu and S. Peng, Solution of forward-backward stochastic differential equations, Probab. Theory Related Fields, 103 (1995), 273-283.  doi: 10.1007/BF01204218.

[6]

G. Jing and P. Wang, A note on "Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions", C. R. Math. Acad. Sci. Paris, 359 (2021), 99-104.  doi: 10.5802/crmath.103.

[7]

J. MaP. Protter and J. Yong, Solving forward-backward stochastic differential equations explicitly – a four step scheme, Probab. Theory Related Fields, 98 (1994), 339-359.  doi: 10.1007/BF01192258.

[8]

J. MaZ. WuD. Zhang and J. Zhang, On well-posedness of forward-backward SDEs – a unified approach, Ann. Appl. Probab., 25 (2015), 2168-2214.  doi: 10.1214/14-AAP1046.

[9]

J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications, , Springer-Verlag, Berlin, 1999.

[10]

E. Pardoux and S. Tang, Forward-backward stochastic differential equations and quasilinear parabolic PDEs, Probab. Theory Related Fields, 114 (1999), 123-150.  doi: 10.1007/s004409970001.

[11]

S. Peng, Backward stochastic differential equations and applications to optimal control, Appl. Math. Optim., 27 (1993), 125-144.  doi: 10.1007/BF01195978.

[12]

S. Peng, Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions, Stochastic Process. Appl., 88 (2000), 259-290.  doi: 10.1016/S0304-4149(00)00005-3.

[13]

S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., 37 (1999), 825-843.  doi: 10.1137/S0363012996313549.

[14]

H. Wang and Z. Wu, Eigenvalues of stochastic Hamiltonian systems driven by Poisson process with boundary conditions, Bound. Value Probl., 2017, Paper No. 164, 20 pp. doi: 10.1186/s13661-017-0896-4.

[15]

J. Yong, Forward-backward stochastic differential equations with mixed initial-terminal conditions, Trans. Amer. Math. Soc., 362 (2010), 1047-1096.  doi: 10.1090/S0002-9947-09-04896-X.

[16]

J. Yong, Linear forward-backward stochastic differential equations, Appl. Math. Optim., 39 (1999), 93-119.  doi: 10.1007/s002459900100.

[17]

J. Yong, Linear forward-backward stochastic differential equations with random coefficients, Probab. Theory Related Fields, 135 (2006), 53-83.  doi: 10.1007/s00440-005-0452-5.

[18]

J. Zhang, Backward Stochastic Differential Equations. From Linear to Fully Nonlinear Theory, Springer, New York, 2017. doi: 10.1007/978-1-4939-7256-2.

[19]

J. Zhang, The wellposedness of FBSDEs, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 927-940.  doi: 10.3934/dcdsb.2006.6.927.

[1]

Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115

[2]

Xiao Ding, Deren Han. A modification of the forward-backward splitting method for maximal monotone mappings. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 295-307. doi: 10.3934/naco.2013.3.295

[3]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control and Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613

[4]

Jiongmin Yong. Forward-backward stochastic differential equations: Initiation, development and beyond. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022011

[5]

Jiongmin Yong. Forward-backward evolution equations and applications. Mathematical Control and Related Fields, 2016, 6 (4) : 653-704. doi: 10.3934/mcrf.2016019

[6]

Fabio Paronetto. Elliptic approximation of forward-backward parabolic equations. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1017-1036. doi: 10.3934/cpaa.2020047

[7]

Adel Chala, Dahbia Hafayed. On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application. Evolution Equations and Control Theory, 2020, 9 (3) : 817-843. doi: 10.3934/eect.2020035

[8]

Richard Archibald, Feng Bao, Yanzhao Cao, He Zhang. A backward SDE method for uncertainty quantification in deep learning. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022062

[9]

Jie Xiong, Shuaiqi Zhang, Yi Zhuang. A partially observed non-zero sum differential game of forward-backward stochastic differential equations and its application in finance. Mathematical Control and Related Fields, 2019, 9 (2) : 257-276. doi: 10.3934/mcrf.2019013

[10]

G. Bellettini, Giorgio Fusco, Nicola Guglielmi. A concept of solution and numerical experiments for forward-backward diffusion equations. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 783-842. doi: 10.3934/dcds.2006.16.783

[11]

Flavia Smarrazzo, Alberto Tesei. Entropy solutions of forward-backward parabolic equations with Devonshire free energy. Networks and Heterogeneous Media, 2012, 7 (4) : 941-966. doi: 10.3934/nhm.2012.7.941

[12]

Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1893-1906. doi: 10.3934/cpaa.2021051

[13]

Kaitong Hu, Zhenjie Ren, Nizar Touzi. On path-dependent multidimensional forward-backward SDEs. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022010

[14]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[15]

Flavia Smarrazzo, Andrea Terracina. Sobolev approximation for two-phase solutions of forward-backward parabolic problems. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1657-1697. doi: 10.3934/dcds.2013.33.1657

[16]

Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems and Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002

[17]

Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations and Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017

[18]

Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379

[19]

Zhiping Fan, Duanzhi Zhang. Minimal period solutions in asymptotically linear Hamiltonian system with symmetries. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2095-2124. doi: 10.3934/dcds.2020354

[20]

Yavdat Il'yasov, Nadir Sari. Solutions of minimal period for a Hamiltonian system with a changing sign potential. Communications on Pure and Applied Analysis, 2005, 4 (1) : 175-185. doi: 10.3934/cpaa.2005.4.175

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (258)
  • HTML views (170)
  • Cited by (0)

Other articles
by authors

[Back to Top]