In this article, we consider the nonlinear BBM equation on the torus. We use controls taking values in a finite dimensional space to show that the equation is approximately controllable in $ H^1(\mathbb{T}) $. We also show that the equation is not exactly controllable in $ H^s(\mathbb{T}) $ for $ s\in[1,2[ $.
Citation: |
[1] |
A. A. Agrachev and A. V. Sarychev, Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing, Comm. Math. Phys., 265 (2006), 673-697.
doi: 10.1007/s00220-006-0002-8.![]() ![]() ![]() |
[2] |
A. A. Agrachev and A. V. Sarychev, Navier-Stokes equations: Controllability by means of low modes forcing, J. Math. Fluid Mech., 7 (2005), 108-152.
doi: 10.1007/s00021-004-0110-1.![]() ![]() ![]() |
[3] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47-78.
doi: 10.1098/rsta.1972.0032.![]() ![]() ![]() |
[4] |
J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation, Discrete Contin. Dyn. Syst., 23 (2009), 1241-1252.
doi: 10.3934/dcds.2009.23.1241.![]() ![]() ![]() |
[5] |
D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators, Cambridge Tracts in Mathematics, 120, Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511662201.![]() ![]() ![]() |
[6] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, 80, Birkhäuser Verlag, Basel, 1984.
doi: 10.1007/978-1-4684-9486-0.![]() ![]() ![]() |
[7] |
H. Leiva, Controllability of the impulsive functional BBM equation with nonlinear term involving spatial derivative, Systems Control Lett., 109 (2017), 12-16.
doi: 10.1016/j.sysconle.2017.09.001.![]() ![]() ![]() |
[8] |
G. G. Lorentz, Approximation of Functions, 2$^{nd}$ edition, Chelsea Publishing Co., New York, 1986.
![]() ![]() |
[9] |
S. Micu, On the controllability of the linearized Benjamin-Bona-Mahony equation, SIAM J. Control Optim., 39 (2001), 1677-1696.
doi: 10.1137/S0363012999362499.![]() ![]() ![]() |
[10] |
H. Nersisyan, Controllability of 3D incompressible Euler equations by a finite-dimensional external force, ESAIM Control Optim. Calc. Var., 16 (2010), 677-694.
doi: 10.1051/cocv/2009017.![]() ![]() ![]() |
[11] |
H. Nersisyan, Controllability of the 3D compressible Euler system, Comm. Partial Differential Equations, 36 (2011), 1544-1564.
doi: 10.1080/03605302.2011.596605.![]() ![]() ![]() |
[12] |
V. Nersesyan, Approximate controllability of Lagrangian trajectories of the 3D Navier–Stokes system by a finite-dimensional force, Nonlinearity, 28 (2015), 825-848.
doi: 10.1088/0951-7715/28/3/825.![]() ![]() ![]() |
[13] |
V. Nersesyan, Approximate controllability of nonlinear parabolic PDEs in arbitrary space dimension, Math. Control Relat. Fields, 11 (2021), 237-251.
doi: 10.3934/mcrf.2020035.![]() ![]() ![]() |
[14] |
V. Nersesyan and H. Nersisyan, Global exact controllability in infinite time of Shrödinger equation, J. Math. Pures Appl., 97 (2012), 295-317.
doi: 10.1016/j.matpur.2011.11.005.![]() ![]() ![]() |
[15] |
M. Panthee, On the ill-posedness result for the BBM equation, Discrete Contin. Dyn. Syst., 30 (2011), 253-259.
doi: 10.3934/dcds.2011.30.253.![]() ![]() ![]() |
[16] |
L. Rosier and B.-Y. Zhang, Unique continuation property and control for the Benjamin–Bona–Mahony equation on a periodic domain, J. Differential Equations, 254 (2013), 141-178.
doi: 10.1016/j.jde.2012.08.014.![]() ![]() ![]() |
[17] |
A. Shirikyan, Approximate controllability of the viscous Burgers equation on the real line, in Geometric Control Theory and Sub-Riemannian Geometry, Springer INdAM Ser., 5, Springer, Cham, 2014,351–370.
doi: 10.1007/978-3-319-02132-4_20.![]() ![]() ![]() |
[18] |
A. Shirikyan, Approximate controllability of three-dimensional Navier–Stokes equations, Comm. Math. Phys., 266 (2006), 123-151.
doi: 10.1007/s00220-006-0007-3.![]() ![]() ![]() |
[19] |
A. Shirikyan, Control theory for the Burgers equation: Agrachev-Sarychev approach, Pure Appl. Funct. Anal., 3 (2018), 219-240.
![]() ![]() |
[20] |
A. Shirikyan, Euler equations are not exactly controllable by a finite-dimensional external force, Phys. D, 237 (2008), 1317-1323.
doi: 10.1016/j.physd.2008.03.021.![]() ![]() ![]() |
[21] |
A. Shirikyan, Exact controllability in projections for three-dimensional Navier–Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 521-537.
doi: 10.1016/j.anihpc.2006.04.002.![]() ![]() ![]() |
[22] |
X. Zhang and E. Zuazua, Unique continuation for the linearized Benjamin–Bona–Mahony equation with space-dependent potential, Math. Ann., 325 (2003), 543-582.
doi: 10.1007/s00208-002-0391-8.![]() ![]() ![]() |