[1]
|
J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2$^{nd}$ edition, Advances in Design and Control, Philadelphia, 2010.
doi: 10.1137/1.9780898718577.
|
[2]
|
T. Bonen, P. Loungani, W. Semmler and S. Koch, Investing to Mitigate and Adapt to Climate Change: A Framework Model, IMF working paper WP no 16/164, International Monetary Fund, Washington, 2016.
|
[3]
|
C. Büskens and H. Maurer, SQP–methods for solving optimal control problems with control and state constraints: Adjoint variables, sensitivity analysis and real–time control, J. Comput. Appl. Math., 120 (2000), 85-108.
doi: 10.1016/S0377-0427(00)00305-8.
|
[4]
|
T. Faulwasser and L. Grüne, Turnpike properties in optimal control: An overview of discrete-time and continuous-time results, Handbook of Numerical Analysis, 23 (2022), 367-400.
|
[5]
|
F. Fourer, D. M. Gay and B. W. Kernighan, AMPL: A Modeling Language for Mathematical
Programming, Duxbury Press, Brooks-Cole Publishing Company, 1993.
|
[6]
|
L. Göllmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays, J. Ind. Manag. Optim., 10 (2014), 413-441.
doi: 10.3934/jimo.2014.10.413.
|
[7]
|
A. Greiner, L. Grüne and W. Semmler, Growth and climate change: Threshold and multiple equilibria, In Dynamic Systems, Economic Growth, and the Environment, (eds. J. Crespo Cuaresma, T. Palokangas and A. Tarasyev), Springer, Heidelberg and New York, (2010), 63–78.
|
[8]
|
L. Grüne, M. A. Müller, C. M. Kellet and S. R. Weller, Strict dissipativity for discrete discounted optimal control problems, Math. Control Relat. Fields, 11 (2021), 771-796.
doi: 10.3934/mcrf.2020046.
|
[9]
|
R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints, SIAM Rev., 37 (1995), 181-218.
doi: 10.1137/1037043.
|
[10]
|
M. Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley & Sons, Inc., New York-London-Sydney 1966.
|
[11]
|
Global Warming of 1.5 ℃, Intergovernmental Panel of Climate Change, 2018.
|
[12]
|
H. Maurer, J. J. Preuß and W. Semmler, Policy scenarios in a model of optimal economic
growth and climate Change, Chapter 5 in The Oxford Handbook of the Macroeconomics of
Global Warming, (eds. L. Bernard and W. Semmler), Oxford University Press, 2015.
|
[13]
|
H. Maurer and W. Semmler, Expediting the transition from non-renewable to renewable energy via optimal control, Discrete Contin. Dyn. Syst., 35 (2015), 4503-4525.
doi: 10.3934/dcds.2015.35.4503.
|
[14]
|
W. Nordhaus, The Question of Balance, New Haven, Yale University Press, New Haven,
2008.
|
[15]
|
W. Nordhaus, Revisiting the social cost of carbon, PNAS, 114 (2017), 1518-1523.
doi: 10.1073/pnas.1609244114.
|
[16]
|
W. Nordhaus and J. Boyer, Warming the World. Economic Models of Global Warming, Cambridge: MIT-Press, Cambridge, 2000.
|
[17]
|
S. Orlov, E. Rovenskaya, W. Semmler and J. Puaschunder, Green bonds, transition to a low-carbon economy, and intergenerational fairness: Evidence from an extended DICE model, IIASA Working Paper, WP-18-001, (2018).
doi: 10.2139/ssrn.3086483.
|
[18]
|
L. S. Pontryagin, V. G. Boltyanski, R. V. Gramkrelidze and E. F. Miscenko, The Mathematical Theory of Optimal Processes, Translated by D. E. Brown A Pergamon Press Book The Macmillan Company, New York 1964.
|
[19]
|
, W. Roedel, Private communication.
|
[20]
|
W. Roedel and T. Wagner, Physik Unserer Umwelt: Die Atmosphäre, Springer, Berlin, Heidelberg, 2011.
|
[21]
|
A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y.
|