\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents
Early Access

Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Early Access articles via the “Early Access” tab for the selected journal.

Analysis of exponential stabilization for Rao-Nakra sandwich beam with time-varying weight and time-varying delay: Multiplier method versus observability

  • * Corresponding author: bwfeng@swufe.edu.cn

    * Corresponding author: bwfeng@swufe.edu.cn 

C. A. S. Nonato thanks CAPES (Brazil) for funding the doctoral scholarship

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we study the global well-posedness and exponential stability for a Rao-Nakra sandwich beam equation with time-varying weight and time-varying delay. The system consists of one Euler-Bernoulli beam equation for the transversal displacement, and two wave equations for the longitudinal displacements of the top and bottom layers. By using the semigroup theory, we show that the system is globally well posed. We give two approaches to obtain the exponential stability. The first one is established by multiplier approach provided the coefficients of delay terms are small. We can also obtain the stability by establishing an equivalence between the stabilization of this system and the observability of the corresponding undamped system. The result is new and is the first result of observability on the Rao-Nakra sandwich beam with with time-varying weight and time-varying delay.

    Mathematics Subject Classification: Primary: 35B40, 93D15; Secondary: 93D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. A. Allen and S. W. Hansen, Analyticity and optimal damping for a multilayer Mead-Markus sandwich beam, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1279-1292.  doi: 10.3934/dcdsb.2010.14.1279.
    [2] A. A. Allen and S. W. Hansen, Analyticity of a multilayer Mead-Markus plate, Nonlinear Anal., 71 (2009), 1835-1842.  doi: 10.1016/j.na.2009.02.063.
    [3] V. BarrosC. Nonato and C. Raposo, Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights, Electron, Res. Arch., 28 (2020), 205-220.  doi: 10.3934/era.2020014.
    [4] A. BenaissaA. Benguessoum and S. A. Messaoudi, Energy decay of solutions for a wave equation with a constant weak delay and a weak internal feedback, J. Qual. Theory Differ. Equ., 2014 (2014), 1-13.  doi: 10.14232/ejqtde.2014.1.11.
    [5] R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.
    [6] R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.
    [7] R. H. Fabiano and S. W. Hansen, Modeling and analysis of a three-layer damped sandwich beam, Discrete Contin. Dyn. Syst., Added Volume, (2001), 143–155.
    [8] B. Feng and B. Chentouf, Exponential stabilization of a microbeam system with a boundary or distributed time delay, Math. Meth. Appl. Sci., 44 (2021), 11613-11630.  doi: 10.1002/mma.7518.
    [9] B. Feng and X. G. Yang, Long-time dynamics for a nonlinear Timoshenko system with delay, Appl. Anal., 96 (2017), 606-625.  doi: 10.1080/00036811.2016.1148139.
    [10] S. W. Hansen, Several related models for multilayer sandwich plates, Math. Models Methods Appl. Sci., 14 (2004), 1103-1132.  doi: 10.1142/S0218202504003568.
    [11] S. W. Hansen and O. Y. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions, ESAIM Control Optim. Calc. Var., 17 (2011), 1101-1132.  doi: 10.1051/cocv/2010040.
    [12] S. W. Hansen and O. Y. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions, Math. Control Relat. Fields, 1 (2011), 189-230.  doi: 10.3934/mcrf.2011.1.189.
    [13] S. W. Hansen and R. Rajaram, Simultaneous boundary control of a Rao-Nakra sandwich beam, Proc. 44th IEEE Conference on Decision and Control and the European Control Conference, (2005), 3146–3151. doi: 10.1109/CDC.2005.1582645. doi: 10.1109/CDC.2005.1582645.
    [14] S. W. Hansen and R. Rajaram, Riesz basis property and related results for a Rao-Nakra sandwich beam, Discrete Contin. Dyn. Syst., suppl. (2005), 365–375.
    [15] J. Hao and J. Zhang, General stability of abstract thermoelastic system with infinite memory and delay, Math. Control Relat. Fields, 11 (2021), 353-371.  doi: 10.3934/mcrf.2020040.
    [16] A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugal. Math., 46 (1989), 245-258. 
    [17] A. Haraux, Two remarks on dissipative hyperbolic problems, Res. Notes in Math., Boston, MA, 122 (1985), 161–179.
    [18] T. Kato, Abstract Differential Equations and Nonlinear Mixed Problems, Publications of the Scuola Normale Superiore. Edizioni della Normale, 1998.
    [19] T. Kato, Linear and quasi-linear equations of evolution of hyperbolic type, Hyperbolicity, 72 (2011), 125-191.  doi: 10.1007/978-3-642-11105-1_4.
    [20] M. KiraneB. Said-Houari and M. N. Anwar, Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks, Commun. Pure Appl. Anal., 10 (2011), 667-686.  doi: 10.3934/cpaa.2011.10.667.
    [21] V. Komornik, Exact Controllability and Stabilization, The Multiplier Method, Masson-John Wiley, Paris, 1994.
    [22] A. KongC. NonatoW. LiuM. J. Santos and C. A. Raposo, Equivalence between exponential stabilization and observability inequality for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights, Discrete Continuous Dyn. Syst. Ser. B, 2021 (2021), 1-20. 
    [23] Y. LiZ. Liu and Y. Wang, Weak stability of a laminated beam, Math. Control Relat. Fields, 8 (2018), 789-808.  doi: 10.3934/mcrf.2018035.
    [24] W. Liu and M. Chen, Well-posedness and exponential decay for a porous thermoelastic system with second sound and a time-varying delay term in the internal feedback, Contin. Mech. Thermodyn., 29 (2017), 731-746.  doi: 10.1007/s00161-017-0556-z.
    [25] Z. LiuB. Rao and Q. Zhang, Polynomial stability of the Rao-Nakra beam with a single internal viscous damping, J. Differ. Equ., 269 (2020), 6125-6162.  doi: 10.1016/j.jde.2020.04.030.
    [26] Z. LiuS. A. Trogdon and J. Yong, Modeling and analysis of a laminated beam, Math. Comput. Modelling, 30 (1999), 149-167.  doi: 10.1016/S0895-7177(99)00122-3.
    [27] F. Z. Mahdi and A. Hakem, Global existence and asymptotic stability for the initial boundary value problem of the linear Bresse system with a time-varying delay term, J. Partial Differ. Equ., 32 (2019), 93-111.  doi: 10.4208/jpde.v32.n2.1.
    [28] D. J. Mead and S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, J. Sound Vibration, 10 (1969), 163-175.  doi: 10.1016/0022-460X(69)90193-X.
    [29] S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.
    [30] S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependence delay, Electron. J. Differ. Equ., 41 (2011), 1-20. 
    [31] S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integral Equ., 21 (2008), 935-958. 
    [32] S. NicaiseC. Pignotti and J. Valein, Stability of the heat and the wave equations with boundary time-varying delays delay, Discrete Contin. Dyn. Syst. - S, 2 (2009), 559-581. 
    [33] S. NicaiseC. Pignotti and J. Valein, Exponential stability of the wave equation with boundary time-varying delay, Discrete Contin. Dyn. Syst. - S, 4 (2011), 693-722.  doi: 10.3934/dcdss.2011.4.693.
    [34] C. NonatoC. Raposo and B. Feng, Exponential stability for a thermoelastic laminated beam with nonlinear weights and time-varying delay, Asymptotic Anal., 126 (2021), 157-185.  doi: 10.3233/asy-201668.
    [35] A. Ö. Özer and S. W. Hansen, Uniform stabilization of a multilayer Rao-Nakra sandwich beam, Evol. Equ. Control Theory, 2 (2013), 695-710.  doi: 10.3934/eect.2013.2.695.
    [36] A. Ö. Özer and S. W. Hansen, Exact boundary controllability results for a multilayer Rao-Nakra sandwich beam, SIAM J. Control Optim., 52 (2014), 1314-1337.  doi: 10.1137/120892994.
    [37] A. Ö. Özer and S. W. Hansen, Exact controllability of a Rayleigh beam with a single boundary control, Math. Control Signals Systems, 23 (2011), 199-222.  doi: 10.1007/s00498-011-0069-4.
    [38] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Vol. 44 of Applied Mathematics Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. doi: 10.1007/978-1-4612-5561-1.
    [39] R. Rajaram, Exact boundary controllability results for a Rao-Nakra sandwich beam, Systems Control Lett., 56 (2007), 558-567.  doi: 10.1016/j.sysconle.2007.03.007.
    [40] Y. V. K. S. Rao and B. C. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores, J. Sound Vib., 34 (1974), 309-326. 
    [41] Y. Wang, Boundary feedback stabilization of a Rao-Nakra sandwich beam, J. Physics: Conf. Series, 1324 (2019), 012044.  doi: 10.1088/1742-6596/1324/1/012044.
    [42] J. M. Wang and B. Z. Guo, Analyticity and dynamic behavior of a damped three-layer sandwich beam, J. Optim. Theory Appl., 137 (2008), 675-689.  doi: 10.1007/s10957-007-9341-7.
    [43] J. M. WangB. Z. Guo and B. Chentouf, Boundary feedback stabilization of a three-layer sandwich beam: Riesz basis approach, ESAIM Control Optim. Calc. Var., 12 (2006), 12-34.  doi: 10.1051/cocv:2005030.
    [44] G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM - Control Optim. Calc. Var., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.
    [45] M. J. Yan and E. H. Dowell, Governing equations for vibratory constrained-layer damping sandwich plates and beams, J. Appl. Mech., 39 (1972), 1041-1046. 
    [46] C. Yang and J. M. Wang, Exponential stability of an active constrained layer beam actuated by a voltage source without magnetic effects, J. Math. Anal. Appl., 448 (2017), 1204-1227.  doi: 10.1016/j.jmaa.2016.11.067.
    [47] K.-Y. Yang and J. M. Wang, Pointwise feedback stabilization of an Euler-Bernoulli beam in observations with time delay, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 4, 23 pp. doi: 10.1051/cocv/2017080. doi: 10.1051/cocv/2017080.
    [48] S. ZitouniA. ArdjouniK. Zennir and R. Amiar, Existence and stability of a damped wave equation with two delayed terms in internal feedback, Romai J., 13 (2017), 143-163. 
  • 加载中
SHARE

Article Metrics

HTML views(331) PDF downloads(351) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return