doi: 10.3934/mcrf.2022020
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Dynamical estimation of a noisy input in a system with a Caputo fractional derivative. The case of continuous measurements of a part of phase coordinates

Ural Federal University, 12, Mira street, Krasovskii Institute of Mathematics and Mechanics UB RAS, 16, S. Kovalevskaya street, Ekaterinburg, 620108, Russia

Received  December 2021 Revised  March 2022 Early access April 2022

The problem of estimating (reconstructing) an unknown input for a system of nonlinear differential equations with the Caputo fractional derivative is considered. Information on the position of the system is available for observations and only a part of system's parameters can be measured. The case of measuring all phase coordinates is also presented. The measurements are continuous and the data obtained in them are noisy. The considered problem is ill-posed and, to solve it, we use the method of dynamic inversion. It is based on regularization methods and constructions of positional control theory. In particular, we use the Tikhonov regularization method also known as the smoothing functional method and the Krasovskii extremal aiming method. The approach to estimating an unknown input implies introducing an auxiliary system (a model) with an appropriate rule of forming a control. The proposed estimation algorithm gives approximations of an unknown input and is stable under informational noises and computational errors. As an example illustrating the elaborated technique, a biological model of human immunodeficiency virus disease is used for simulation. The simulation results demonstrate the importance of the approach to on-line estimating unobservable parameters in real processes.

Citation: Platon Surkov. Dynamical estimation of a noisy input in a system with a Caputo fractional derivative. The case of continuous measurements of a part of phase coordinates. Mathematical Control and Related Fields, doi: 10.3934/mcrf.2022020
References:
[1]

A. A. M. ArafaS. Z. Rida and M. Khalil, Fractional modeling dynamics of HIV and CD4+T-cells during primary infection, Nonlinear Biomedical Physics, 6 (2012), 1-7. 

[2] Y. Bar-ShalomX. R. Li and T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software, John Wiley & Sons, New York, 2004. 
[3]

M. S. Blizorukova and V. I. Maksimov, Dynamic discrepancy method in the problem of reconstructing the input of a system with time delay control, Comput. Math. Math. Phys., 61 (2021), 359-367.  doi: 10.1134/S0965542521030040.

[4]

A. BoumenirV. K. Tuan and W. Al-Khulaifi, Reconstructing a fractional integro-differential equation, Math. Methods Appl. Sci., 44 (2021), 3159-3166.  doi: 10.1002/mma.6648.

[5]

L. Bourdin, Cauchy–Lipschitz theory for fractional multi-order dynamics: State-transition matrices, Duhamel formulas and duality theorems, Differential and Integral Equations, 31 (2018), 559-594. 

[6]

N. BotkinV. TurovaB. HosseiniJ. Diepolder and F. Holzapfel, Tracking aircraft trajectories in the presence of wind disturbances, Math. Control Relat. Fields, 11 (2021), 499-520.  doi: 10.3934/mcrf.2021010.

[7]

S. Butera and M. Di Paola, A physically based connection between fractional calculus and fractal geometry, Annals of Physics, 350 (2014), 146-158.  doi: 10.1016/j.aop.2014.07.008.

[8]

F. FagnaniV. Maksimov and L. Pandolfi, A recursive deconvolution approach to disturbance reduction, IEEE Trans. Automat. Control, 49 (2004), 907-921.  doi: 10.1109/TAC.2004.829596.

[9]

M. I. Gomoyunov, Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems, Fract. Calc. Appl. Anal., 21 (2018), 1238-1261.  doi: 10.1515/fca-2018-0066.

[10]

M. I. Gomoyunov, Differential games for fractional-order systems: Hamilton-Jacobi-Bellman-Isaacs equation and optimal feedback strategies, Mathematics, 6 (2021), 1667. 

[11] S. I. Kabanikhin, Inverse and Ill-Posed Problems: Theory and Application, De Gruyter, Berlin, 2012. 
[12] K. J. Keesman, System Identification. An Introduction, Springer-Verlag, London, 2011. 
[13] A. A. KilbasH. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006. 
[14]

E. K. Kostousova, External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms, Math. Control Relat. Fields, 11 (2021), 625-641.  doi: 10.3934/mcrf.2021015.

[15] N. N. Krasovskii and A. I. Subbotin, Game-Theoretical Control Problems, Springer-Verlag, New York, 1988. 
[16]

A. V. Kryazhimskii and Yu. S. Osipov, On positional calculation of $\Omega$-normal control in dynamical system, Problems Control Inform. Theory, 13 (1984), 425-436. 

[17]

A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes. Theory and Computation, Birkhäuser/Springer, Cham, 2014. doi: 10.1007/978-3-319-10277-1.

[18]

M. M. Lavrent'ev, V. G. Romanov and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis, American Mathematical Society, Providence, R. I., 1986.

[19] L. Ljung and T. Söderström, Theory and Practice of Recursive Identification, MIT Press, Cambridge, 1983. 
[20]

V. I. Maksimov, Dynamical Inverse Problems of Distributed Systems, VSP, Utrecht, 2002. doi: 10.1515/9783110944839.

[21]

V. I. Maksimov, On a modification of the dynamic regularization method, Differential Equations, 57 (2021), 1119-1123.  doi: 10.1134/S0012266121080152.

[22]

V. I. Maksimov, The methods of dynamical reconstruction of an input in a system of ordinary differential equations, J. Inverse and Ill-Posed Problems, 29 (2021), 125-156.  doi: 10.1515/jiip-2020-0040.

[23]

I. Matychyn and V. Onyshchenko, Time-optimal control of linear fractional systems with variable coefficients, Int. J. Appl. Math. Comput. Sci., 31 (2021), 375-386.  doi: 10.34768/amcs-2021-0025.

[24]

G. Nazir, K. Shah, A. Debbouche and R. A. Khan, Study of HIV mathematical model under nonsingular kernel type derivative of fractional order, Chaos Solitons Fractals, 139 (2020), 110095, 8 pp. doi: 10.1016/j.chaos.2020.110095.

[25]

J. P. Norton, An Introduction to Identification, Dover Publications Inc., New York, 2009.

[26] Yu. S. Osipov and A. V. Kryazhimskii, Inverse Problems for Ordinary Differential Equations: Dynamical Solutions, Gordon and Breach Science Publishers, Basel, 1995. 
[27]

Yu. S. Osipov and V. I. Maksimov, On dynamical input reconstruction in a distributed second order equation, J. Inverse Ill-Posed Probl., 29 (2021), 707-719.  doi: 10.1515/jiip-2021-0004.

[28]

L. Pandolfi, On-line input identification and application to active noise cancellation, Annual Reviews in Control, 34 (2010), 245-261. 

[29] L. Pandolfi, Systems with Persistent Memory: Controllability, Stability, Identification, Springer, Cham, 2021. 
[30]

I. Podlubny, Geometrical and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5 (2002), 367-386. 

[31]

V. Rozenberg, On a problem of dynamical input reconstruction for a system of special type under conditions of uncertainty, AIMS Math., 5 (2020), 4108-4120.  doi: 10.3934/math.2020263.

[32]

J. Shao and F. Meng, Gronwall–{B}ellman type inequalities and their applications to fractional differential equations, Abstr. Appl. Anal., (2013), Art. ID 217641, 7 pp. doi: 10.1155/2013/217641.

[33]

A. A. Stanislavsky, Probability interpretation of the integral of fractional order, Theoret. and Math. Phys., 138 (2004), 418-431.  doi: 10.1023/B:TAMP.0000018457.70786.36.

[34]

P. G. Surkov, Dynamic right-hand side reconstruction problem for a system of fractional differential equations, Differential Equation, 55 (2019), 849-858.  doi: 10.1134/S0012266119060120.

[35]

P. G. Surkov, Real-time reconstruction of external impact on fractional order system under measuring a part of coordinates, J. Comput. Appl. Math., 381 (2021), Paper No. 113039, 12 pp. doi: 10.1016/j.cam.2020.113039.

[36]

P. G. Surkov, Approximate calculation of the Caputo-type fractional derivative from inaccurate data. Dynamical approach, Fract. Calc. Appl. Anal., 24 (2021), 895-922.  doi: 10.1515/fca-2021-0038.

[37]

P. G. Surkov, Real-time calculation of a Caputo fractional derivative from noisy data. The case of continuous measurements, Proceedings of the Steklov Institute of Mathematics, 315 (2021), S225-S235.  doi: 10.21538/0134-4889-2021-27-2-238-248.

[38]

V. E. Tarasov, Geometric interpretation of fractional-order derivative, Fract. Calc. Appl. Anal., 19 (2016), 1200-1221.  doi: 10.1515/fca-2016-0062.

[39] A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems, John Wiley & Sons, New York, 1977. 
[40]

V. M. Veliov, On the relationship between continuous- and discrete-time control systems, CEJOR Cent. Eur. J. Oper. Res., 18 (2010), 511-523.  doi: 10.1007/s10100-010-0167-2.

[41]

H. Unbehauen and G. P. Rao, Identification of Continuous Systems, North-Holland Publishing Co., Amsterdam, 1987.

[42]

H. Unbehauen and G. P. Rao, A review of identification in continuous-time systems, Annual Reviews in Control, 2 (1998), 145-171. 

show all references

References:
[1]

A. A. M. ArafaS. Z. Rida and M. Khalil, Fractional modeling dynamics of HIV and CD4+T-cells during primary infection, Nonlinear Biomedical Physics, 6 (2012), 1-7. 

[2] Y. Bar-ShalomX. R. Li and T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software, John Wiley & Sons, New York, 2004. 
[3]

M. S. Blizorukova and V. I. Maksimov, Dynamic discrepancy method in the problem of reconstructing the input of a system with time delay control, Comput. Math. Math. Phys., 61 (2021), 359-367.  doi: 10.1134/S0965542521030040.

[4]

A. BoumenirV. K. Tuan and W. Al-Khulaifi, Reconstructing a fractional integro-differential equation, Math. Methods Appl. Sci., 44 (2021), 3159-3166.  doi: 10.1002/mma.6648.

[5]

L. Bourdin, Cauchy–Lipschitz theory for fractional multi-order dynamics: State-transition matrices, Duhamel formulas and duality theorems, Differential and Integral Equations, 31 (2018), 559-594. 

[6]

N. BotkinV. TurovaB. HosseiniJ. Diepolder and F. Holzapfel, Tracking aircraft trajectories in the presence of wind disturbances, Math. Control Relat. Fields, 11 (2021), 499-520.  doi: 10.3934/mcrf.2021010.

[7]

S. Butera and M. Di Paola, A physically based connection between fractional calculus and fractal geometry, Annals of Physics, 350 (2014), 146-158.  doi: 10.1016/j.aop.2014.07.008.

[8]

F. FagnaniV. Maksimov and L. Pandolfi, A recursive deconvolution approach to disturbance reduction, IEEE Trans. Automat. Control, 49 (2004), 907-921.  doi: 10.1109/TAC.2004.829596.

[9]

M. I. Gomoyunov, Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems, Fract. Calc. Appl. Anal., 21 (2018), 1238-1261.  doi: 10.1515/fca-2018-0066.

[10]

M. I. Gomoyunov, Differential games for fractional-order systems: Hamilton-Jacobi-Bellman-Isaacs equation and optimal feedback strategies, Mathematics, 6 (2021), 1667. 

[11] S. I. Kabanikhin, Inverse and Ill-Posed Problems: Theory and Application, De Gruyter, Berlin, 2012. 
[12] K. J. Keesman, System Identification. An Introduction, Springer-Verlag, London, 2011. 
[13] A. A. KilbasH. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006. 
[14]

E. K. Kostousova, External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms, Math. Control Relat. Fields, 11 (2021), 625-641.  doi: 10.3934/mcrf.2021015.

[15] N. N. Krasovskii and A. I. Subbotin, Game-Theoretical Control Problems, Springer-Verlag, New York, 1988. 
[16]

A. V. Kryazhimskii and Yu. S. Osipov, On positional calculation of $\Omega$-normal control in dynamical system, Problems Control Inform. Theory, 13 (1984), 425-436. 

[17]

A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes. Theory and Computation, Birkhäuser/Springer, Cham, 2014. doi: 10.1007/978-3-319-10277-1.

[18]

M. M. Lavrent'ev, V. G. Romanov and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis, American Mathematical Society, Providence, R. I., 1986.

[19] L. Ljung and T. Söderström, Theory and Practice of Recursive Identification, MIT Press, Cambridge, 1983. 
[20]

V. I. Maksimov, Dynamical Inverse Problems of Distributed Systems, VSP, Utrecht, 2002. doi: 10.1515/9783110944839.

[21]

V. I. Maksimov, On a modification of the dynamic regularization method, Differential Equations, 57 (2021), 1119-1123.  doi: 10.1134/S0012266121080152.

[22]

V. I. Maksimov, The methods of dynamical reconstruction of an input in a system of ordinary differential equations, J. Inverse and Ill-Posed Problems, 29 (2021), 125-156.  doi: 10.1515/jiip-2020-0040.

[23]

I. Matychyn and V. Onyshchenko, Time-optimal control of linear fractional systems with variable coefficients, Int. J. Appl. Math. Comput. Sci., 31 (2021), 375-386.  doi: 10.34768/amcs-2021-0025.

[24]

G. Nazir, K. Shah, A. Debbouche and R. A. Khan, Study of HIV mathematical model under nonsingular kernel type derivative of fractional order, Chaos Solitons Fractals, 139 (2020), 110095, 8 pp. doi: 10.1016/j.chaos.2020.110095.

[25]

J. P. Norton, An Introduction to Identification, Dover Publications Inc., New York, 2009.

[26] Yu. S. Osipov and A. V. Kryazhimskii, Inverse Problems for Ordinary Differential Equations: Dynamical Solutions, Gordon and Breach Science Publishers, Basel, 1995. 
[27]

Yu. S. Osipov and V. I. Maksimov, On dynamical input reconstruction in a distributed second order equation, J. Inverse Ill-Posed Probl., 29 (2021), 707-719.  doi: 10.1515/jiip-2021-0004.

[28]

L. Pandolfi, On-line input identification and application to active noise cancellation, Annual Reviews in Control, 34 (2010), 245-261. 

[29] L. Pandolfi, Systems with Persistent Memory: Controllability, Stability, Identification, Springer, Cham, 2021. 
[30]

I. Podlubny, Geometrical and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5 (2002), 367-386. 

[31]

V. Rozenberg, On a problem of dynamical input reconstruction for a system of special type under conditions of uncertainty, AIMS Math., 5 (2020), 4108-4120.  doi: 10.3934/math.2020263.

[32]

J. Shao and F. Meng, Gronwall–{B}ellman type inequalities and their applications to fractional differential equations, Abstr. Appl. Anal., (2013), Art. ID 217641, 7 pp. doi: 10.1155/2013/217641.

[33]

A. A. Stanislavsky, Probability interpretation of the integral of fractional order, Theoret. and Math. Phys., 138 (2004), 418-431.  doi: 10.1023/B:TAMP.0000018457.70786.36.

[34]

P. G. Surkov, Dynamic right-hand side reconstruction problem for a system of fractional differential equations, Differential Equation, 55 (2019), 849-858.  doi: 10.1134/S0012266119060120.

[35]

P. G. Surkov, Real-time reconstruction of external impact on fractional order system under measuring a part of coordinates, J. Comput. Appl. Math., 381 (2021), Paper No. 113039, 12 pp. doi: 10.1016/j.cam.2020.113039.

[36]

P. G. Surkov, Approximate calculation of the Caputo-type fractional derivative from inaccurate data. Dynamical approach, Fract. Calc. Appl. Anal., 24 (2021), 895-922.  doi: 10.1515/fca-2021-0038.

[37]

P. G. Surkov, Real-time calculation of a Caputo fractional derivative from noisy data. The case of continuous measurements, Proceedings of the Steklov Institute of Mathematics, 315 (2021), S225-S235.  doi: 10.21538/0134-4889-2021-27-2-238-248.

[38]

V. E. Tarasov, Geometric interpretation of fractional-order derivative, Fract. Calc. Appl. Anal., 19 (2016), 1200-1221.  doi: 10.1515/fca-2016-0062.

[39] A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems, John Wiley & Sons, New York, 1977. 
[40]

V. M. Veliov, On the relationship between continuous- and discrete-time control systems, CEJOR Cent. Eur. J. Oper. Res., 18 (2010), 511-523.  doi: 10.1007/s10100-010-0167-2.

[41]

H. Unbehauen and G. P. Rao, Identification of Continuous Systems, North-Holland Publishing Co., Amsterdam, 1987.

[42]

H. Unbehauen and G. P. Rao, A review of identification in continuous-time systems, Annual Reviews in Control, 2 (1998), 145-171. 

Figure 1.  The component $ z $ of system (76) and the component $ w_1 $ of model (79)
Figure 2.  The unovservable component $ x $ of system (76) and the component $ w_2 $ of model (79)
Figure 3.  The input action $ u $ and the reconstructed action $ v^h $
Figure 4.  The components u1, u2 and the components v1h, v2h
Figure 5.  The input action Bu and its estimation Bvh
[1]

Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022014

[2]

Wai-Ki Ching, Jia-Wen Gu, Harry Zheng. On correlated defaults and incomplete information. Journal of Industrial and Management Optimization, 2021, 17 (2) : 889-908. doi: 10.3934/jimo.2020003

[3]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[4]

Björn Popilka, Simon Setzer, Gabriele Steidl. Signal recovery from incomplete measurements in the presence of outliers. Inverse Problems and Imaging, 2007, 1 (4) : 661-672. doi: 10.3934/ipi.2007.1.661

[5]

Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 395-426. doi: 10.3934/naco.2021013

[6]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The numerical solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 621-636. doi: 10.3934/naco.2021026

[7]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[8]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control and Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[9]

Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060

[10]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[11]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030

[12]

Felipe Ponce-Vanegas. Reconstruction of the derivative of the conductivity at the boundary. Inverse Problems and Imaging, 2020, 14 (4) : 701-718. doi: 10.3934/ipi.2020032

[13]

Feimin Zhong, Jinxing Xie, Jing Jiao. Solutions for bargaining games with incomplete information: General type space and action space. Journal of Industrial and Management Optimization, 2018, 14 (3) : 953-966. doi: 10.3934/jimo.2017084

[14]

Miquel Oliu-Barton. Asymptotically optimal strategies in repeated games with incomplete information and vanishing weights. Journal of Dynamics and Games, 2019, 6 (4) : 259-275. doi: 10.3934/jdg.2019018

[15]

Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430

[16]

Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889

[17]

M. M. El-Dessoky, Muhammad Altaf Khan. Application of Caputo-Fabrizio derivative to a cancer model with unknown parameters. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3557-3575. doi: 10.3934/dcdss.2020429

[18]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060

[19]

Mikko Kaasalainen. Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction. Inverse Problems and Imaging, 2011, 5 (1) : 37-57. doi: 10.3934/ipi.2011.5.37

[20]

José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Information--bit error rate and false positives in an MDS code. Advances in Mathematics of Communications, 2015, 9 (2) : 149-168. doi: 10.3934/amc.2015.9.149

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (109)
  • HTML views (45)
  • Cited by (0)

Other articles
by authors

[Back to Top]