doi: 10.3934/mcrf.2022025
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Identifying a space-dependent source term in distributed order time-fractional diffusion equations

Department of Economic Mathematics, Banking University of Ho Chi Minh City, Ho Chi Minh City, Vietnam

Received  February 2022 Revised  April 2022 Early access May 2022

The aim of this paper is to investigate an inverse problem of recovering a space-dependent source term governed by distributed order time-fractional diffusion equations in Hilbert scales. Such a problem is ill-posed and has important practical applications. For this problem, we propose a general regularization method based on the idea of the filter method. With a suitable source condition, we prove that the method is of optimal order under various choices of regularization parameter. One is based on the a priori regularization parameter choice rule and another one is the discrepancy principle. Finally, the capabilities of our method are illustrated by both the Tikhonov and the Landweber method.

Citation: Dinh Nguyen Duy Hai. Identifying a space-dependent source term in distributed order time-fractional diffusion equations. Mathematical Control and Related Fields, doi: 10.3934/mcrf.2022025
References:
[1]

W. BuA. Xiao and W. Zeng, Finite difference/finite element methods for distributed-order time fractional diffusion equations, J. Sci. Comput., 72 (2017), 422-441.  doi: 10.1007/s10915-017-0360-8.

[2]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, Springer, 2016. doi: 10.1007/978-3-319-28739-3.

[3]

J. R. Cannon, Determination of an unknown heat source from overspecified boundary data, SIAM J. Numer. Anal., 5 (1968), 275-286.  doi: 10.1137/0705024.

[4]

X. ChengL. Yuan and K. Liang, Inverse source problem for a distributed-order time fractional diffusion equation, J. Inverse Ill-Posed Probl., 28 (2020), 17-32.  doi: 10.1515/jiip-2019-0006.

[5]

R. Courant and D. Hilbert, Methods of Mathematical Physics, Translated from the English by Ch'ien Min and Kuo Tun-jen Science Press, Peking 1965.

[6]

N. M. DienD. N. D. HaiT. Q. Viet and D. D. Trong, On Tikhonov's method and optimal error bound for inverse source problem for a time-fractional diffusion equation, Comput. Math. Appl., 80 (2020), 61-81.  doi: 10.1016/j.camwa.2020.02.024.

[7]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers Group, Dordrecht, 1996.

[8]

N. J. FordM. L. Morgado and M. Rebelo, An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time, Electron. Trans. Numer. Anal., 44 (2015), 289-305. 

[9]

D. N. D. Hai and D. D. Trong, Optimal error bound and truncation regularization method for a backward time-fractional diffusion problem in Hilbert scales, Appl. Math. Lett., 107 (2020), 106448, 9 pp. doi: 10.1016/j.aml.2020.106448.

[10]

A. Hasanov and B. Pektaș, Identification of an unknown time-dependent heat source term from overspecified Dirichlet boundary data by conjugate gradient method, Comput. Math. Appl., 65 (2013), 42-57.  doi: 10.1016/j.camwa.2012.10.009.

[11]

A. HazaneeD. LesnicM. I. Ismailov and N. B. Kerimov, Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions, Appl. Math. Comput., 346 (2019), 800-815.  doi: 10.1016/j.amc.2018.10.059.

[12]

V. Isakov, Inverse Source Problems, American Mathematical Society, Providence, RI, 1990. doi: 10.1090/surv/034.

[13]

Y. KianE. Soccorsi and M. Yamamoto, On time-fractional diffusion equations with space-dependent variable order, Ann. Henri Poincaré, 19 (2018), 3855-3881.  doi: 10.1007/s00023-018-0734-y.

[14]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[15]

A. N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340 (2008), 252-281.  doi: 10.1016/j.jmaa.2007.08.024.

[16]

A. Kubica and K. Ryszewska, Decay of solutions to parabolic-type problem with distributed order Caputo derivative, J. Math. Anal. Appl., 465 (2018), 75-99.  doi: 10.1016/j.jmaa.2018.04.067.

[17]

Z. Li, K. Fujishiro and G. Li, Uniqueness in the inversion of distributed orders in ultraslow diffusion equations, J. Comput. Appl. Math., 369 (2020), 112564, 13 pp. doi: 10.1016/j.cam.2019.112564.

[18]

Z. LiY. Kian and E. Soccorsi, Initial-boundary value problem for distributed order time-fractional diffusion equations, Asymptot. Anal., 115 (2019), 95-126.  doi: 10.3233/ASY-191532.

[19]

Z. LiY. Luchko and M. Yamamoto, Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations, Fract. Calc. Appl. Anal., 17 (2014), 1114-1136.  doi: 10.2478/s13540-014-0217-x.

[20]

Z. LiY. Luchko and M. Yamamoto, Analyticity of solutions to a distributed order time-fractional diffusion equation and its application to an inverse problem, Comput. Math. Appl., 73 (2017), 1041-1052.  doi: 10.1016/j.camwa.2016.06.030.

[21]

Y. S. LiL. L. SunZ. Q. Zhang and T. Wei, Identification of the time-dependent source term in a multi-term time-fractional diffusion equation, Numer. Algor., 82 (2019), 1279-1301.  doi: 10.1007/s11075-019-00654-5.

[22]

J. J. LiuC. L. Sun and M. Yamamoto, Recovering the weight function in distributed order fractional equation from interior measurement, Appl. Numer. Math., 168 (2021), 84-103.  doi: 10.1016/j.apnum.2021.05.026.

[23]

S. LuS. V. PereverzevY. Shao and U. Tautenhahn, On the generalized discrepancy principle for Tikhonov regularization in Hilbert scales, J. Integral Equations Appl., 22 (2010), 483-517. 

[24]

Y. Luchko, Boundary value problems for the generalized time-fractional diffusion equation of distributed order, Fract. Calc. Appl. Anal., 12 (2009), 409-422. 

[25]

Z. Ruan and Z. Wang, Identification of a time-dependent source term for a time fractional diffusion problem, Appl. Anal., 96 (2017), 1638-1655.  doi: 10.1080/00036811.2016.1232400.

[26]

W. Rundell and Z. Zhang, Fractional diffusion: Recovering the distributed fractional derivative from overposed data, Inverse Probl., 33 (2017), 035008, 27 pp. doi: 10.1088/1361-6420/aa573e.

[27]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.

[28]

C. Sun and J. Liu, An inverse source problem for distributed order time-fractional diffusion equation, Inverse Probl., 36 (2020), 055008.  doi: 10.1088/1361-6420/ab762c.

[29]

S. Tatar and S. Ulusoy, An inverse source problem for a one-dimensional space-time fractional diffusion equation, Appl. Anal., 94 (2015), 2233-2244.  doi: 10.1080/00036811.2014.979808.

[30]

U. Tautenhahn, Optimality for ill-posed problems under general source conditions, Num. Funct. Anal. Optim., 19 (1998), 377-398.  doi: 10.1080/01630569808816834.

[31]

D. D. TrongD. N. D. Hai and N. D. Minh, Optimal regularization for an unknown source of space-fractional diffusion equation, Appl. Math. Comput., 349 (2019), 184-206.  doi: 10.1016/j.amc.2018.12.030.

[32]

H. T. NguyenD. L. Le and V. T. Nguyen, Regularized solution of an inverse source problem for a time fractional diffusion equation, Appl. Math. Model., 40 (2016), 8244-8264.  doi: 10.1016/j.apm.2016.04.009.

[33]

J. G. WangY. B. Zhou and T. Wei, Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation, Appl. Numer. Math., 68 (2013), 39-57.  doi: 10.1016/j.apnum.2013.01.001.

[34]

H. YeF. LiuV. Anh and I. Turner, Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains, IMA J. Appl. Math., 80 (2015), 825-838.  doi: 10.1093/imamat/hxu015.

[35]

Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Probl., 27 (2011), 035010, 12 pp. doi: 10.1088/0266-5611/27/3/035010.

show all references

References:
[1]

W. BuA. Xiao and W. Zeng, Finite difference/finite element methods for distributed-order time fractional diffusion equations, J. Sci. Comput., 72 (2017), 422-441.  doi: 10.1007/s10915-017-0360-8.

[2]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, Springer, 2016. doi: 10.1007/978-3-319-28739-3.

[3]

J. R. Cannon, Determination of an unknown heat source from overspecified boundary data, SIAM J. Numer. Anal., 5 (1968), 275-286.  doi: 10.1137/0705024.

[4]

X. ChengL. Yuan and K. Liang, Inverse source problem for a distributed-order time fractional diffusion equation, J. Inverse Ill-Posed Probl., 28 (2020), 17-32.  doi: 10.1515/jiip-2019-0006.

[5]

R. Courant and D. Hilbert, Methods of Mathematical Physics, Translated from the English by Ch'ien Min and Kuo Tun-jen Science Press, Peking 1965.

[6]

N. M. DienD. N. D. HaiT. Q. Viet and D. D. Trong, On Tikhonov's method and optimal error bound for inverse source problem for a time-fractional diffusion equation, Comput. Math. Appl., 80 (2020), 61-81.  doi: 10.1016/j.camwa.2020.02.024.

[7]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers Group, Dordrecht, 1996.

[8]

N. J. FordM. L. Morgado and M. Rebelo, An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time, Electron. Trans. Numer. Anal., 44 (2015), 289-305. 

[9]

D. N. D. Hai and D. D. Trong, Optimal error bound and truncation regularization method for a backward time-fractional diffusion problem in Hilbert scales, Appl. Math. Lett., 107 (2020), 106448, 9 pp. doi: 10.1016/j.aml.2020.106448.

[10]

A. Hasanov and B. Pektaș, Identification of an unknown time-dependent heat source term from overspecified Dirichlet boundary data by conjugate gradient method, Comput. Math. Appl., 65 (2013), 42-57.  doi: 10.1016/j.camwa.2012.10.009.

[11]

A. HazaneeD. LesnicM. I. Ismailov and N. B. Kerimov, Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions, Appl. Math. Comput., 346 (2019), 800-815.  doi: 10.1016/j.amc.2018.10.059.

[12]

V. Isakov, Inverse Source Problems, American Mathematical Society, Providence, RI, 1990. doi: 10.1090/surv/034.

[13]

Y. KianE. Soccorsi and M. Yamamoto, On time-fractional diffusion equations with space-dependent variable order, Ann. Henri Poincaré, 19 (2018), 3855-3881.  doi: 10.1007/s00023-018-0734-y.

[14]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[15]

A. N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340 (2008), 252-281.  doi: 10.1016/j.jmaa.2007.08.024.

[16]

A. Kubica and K. Ryszewska, Decay of solutions to parabolic-type problem with distributed order Caputo derivative, J. Math. Anal. Appl., 465 (2018), 75-99.  doi: 10.1016/j.jmaa.2018.04.067.

[17]

Z. Li, K. Fujishiro and G. Li, Uniqueness in the inversion of distributed orders in ultraslow diffusion equations, J. Comput. Appl. Math., 369 (2020), 112564, 13 pp. doi: 10.1016/j.cam.2019.112564.

[18]

Z. LiY. Kian and E. Soccorsi, Initial-boundary value problem for distributed order time-fractional diffusion equations, Asymptot. Anal., 115 (2019), 95-126.  doi: 10.3233/ASY-191532.

[19]

Z. LiY. Luchko and M. Yamamoto, Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations, Fract. Calc. Appl. Anal., 17 (2014), 1114-1136.  doi: 10.2478/s13540-014-0217-x.

[20]

Z. LiY. Luchko and M. Yamamoto, Analyticity of solutions to a distributed order time-fractional diffusion equation and its application to an inverse problem, Comput. Math. Appl., 73 (2017), 1041-1052.  doi: 10.1016/j.camwa.2016.06.030.

[21]

Y. S. LiL. L. SunZ. Q. Zhang and T. Wei, Identification of the time-dependent source term in a multi-term time-fractional diffusion equation, Numer. Algor., 82 (2019), 1279-1301.  doi: 10.1007/s11075-019-00654-5.

[22]

J. J. LiuC. L. Sun and M. Yamamoto, Recovering the weight function in distributed order fractional equation from interior measurement, Appl. Numer. Math., 168 (2021), 84-103.  doi: 10.1016/j.apnum.2021.05.026.

[23]

S. LuS. V. PereverzevY. Shao and U. Tautenhahn, On the generalized discrepancy principle for Tikhonov regularization in Hilbert scales, J. Integral Equations Appl., 22 (2010), 483-517. 

[24]

Y. Luchko, Boundary value problems for the generalized time-fractional diffusion equation of distributed order, Fract. Calc. Appl. Anal., 12 (2009), 409-422. 

[25]

Z. Ruan and Z. Wang, Identification of a time-dependent source term for a time fractional diffusion problem, Appl. Anal., 96 (2017), 1638-1655.  doi: 10.1080/00036811.2016.1232400.

[26]

W. Rundell and Z. Zhang, Fractional diffusion: Recovering the distributed fractional derivative from overposed data, Inverse Probl., 33 (2017), 035008, 27 pp. doi: 10.1088/1361-6420/aa573e.

[27]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.

[28]

C. Sun and J. Liu, An inverse source problem for distributed order time-fractional diffusion equation, Inverse Probl., 36 (2020), 055008.  doi: 10.1088/1361-6420/ab762c.

[29]

S. Tatar and S. Ulusoy, An inverse source problem for a one-dimensional space-time fractional diffusion equation, Appl. Anal., 94 (2015), 2233-2244.  doi: 10.1080/00036811.2014.979808.

[30]

U. Tautenhahn, Optimality for ill-posed problems under general source conditions, Num. Funct. Anal. Optim., 19 (1998), 377-398.  doi: 10.1080/01630569808816834.

[31]

D. D. TrongD. N. D. Hai and N. D. Minh, Optimal regularization for an unknown source of space-fractional diffusion equation, Appl. Math. Comput., 349 (2019), 184-206.  doi: 10.1016/j.amc.2018.12.030.

[32]

H. T. NguyenD. L. Le and V. T. Nguyen, Regularized solution of an inverse source problem for a time fractional diffusion equation, Appl. Math. Model., 40 (2016), 8244-8264.  doi: 10.1016/j.apm.2016.04.009.

[33]

J. G. WangY. B. Zhou and T. Wei, Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation, Appl. Numer. Math., 68 (2013), 39-57.  doi: 10.1016/j.apnum.2013.01.001.

[34]

H. YeF. LiuV. Anh and I. Turner, Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains, IMA J. Appl. Math., 80 (2015), 825-838.  doi: 10.1093/imamat/hxu015.

[35]

Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Probl., 27 (2011), 035010, 12 pp. doi: 10.1088/0266-5611/27/3/035010.

[1]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems and Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[2]

Zhiyuan Li, Yikan Liu, Masahiro Yamamoto. Inverse source problem for a one-dimensional time-fractional diffusion equation and unique continuation for weak solutions. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022027

[3]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems and Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[4]

Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266

[5]

Xinchi Huang, Atsushi Kawamoto. Inverse problems for a half-order time-fractional diffusion equation in arbitrary dimension by Carleman estimates. Inverse Problems and Imaging, 2022, 16 (1) : 39-67. doi: 10.3934/ipi.2021040

[6]

Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016

[7]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[8]

Masahiro Yamamoto. Uniqueness for inverse problem of determining fractional orders for time-fractional advection-diffusion equations. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022017

[9]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations and Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[10]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control and Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

[11]

Ye Zhang, Bernd Hofmann. Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems. Inverse Problems and Imaging, 2021, 15 (2) : 229-256. doi: 10.3934/ipi.2020062

[12]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[13]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics and Games, 2021, 8 (4) : 381-402. doi: 10.3934/jdg.2021013

[14]

Matthew A. Fury. Regularization for ill-posed inhomogeneous evolution problems in a Hilbert space. Conference Publications, 2013, 2013 (special) : 259-272. doi: 10.3934/proc.2013.2013.259

[15]

Alfredo Lorenzi, Luca Lorenzi. A strongly ill-posed integrodifferential singular parabolic problem in the unit cube of $\mathbb{R}^n$. Evolution Equations and Control Theory, 2014, 3 (3) : 499-524. doi: 10.3934/eect.2014.3.499

[16]

Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021060

[17]

Huan-Zhen Chen, Zhao-Jie Zhou, Hong Wang, Hong-Ying Man. An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 325-341. doi: 10.3934/dcdsb.2011.15.325

[18]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5217-5226. doi: 10.3934/dcdsb.2020340

[19]

Felix Lucka, Katharina Proksch, Christoph Brune, Nicolai Bissantz, Martin Burger, Holger Dette, Frank Wübbeling. Risk estimators for choosing regularization parameters in ill-posed problems - properties and limitations. Inverse Problems and Imaging, 2018, 12 (5) : 1121-1155. doi: 10.3934/ipi.2018047

[20]

Guozhi Dong, Bert Jüttler, Otmar Scherzer, Thomas Takacs. Convergence of Tikhonov regularization for solving ill-posed operator equations with solutions defined on surfaces. Inverse Problems and Imaging, 2017, 11 (2) : 221-246. doi: 10.3934/ipi.2017011

2021 Impact Factor: 1.141

Metrics

  • PDF downloads (170)
  • HTML views (150)
  • Cited by (0)

Other articles
by authors

[Back to Top]