\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Control of reaction-diffusion models in biology and social sciences

  • *Corresponding author: Domènec Ruiz-Balet

    *Corresponding author: Domènec Ruiz-Balet 
Abstract / Introduction Full Text(HTML) Figure(49) Related Papers Cited by
  • These lecture notes address the controllability under state constraints of reaction-diffusion equations arising in socio-biological contexts. We restrict our study to scalar equations with monostable and bistable nonlinearities.

    The uncontrolled models describing, for instance, population dynamics, concentrations of chemicals, temperatures, etc., intrinsically preserve pointwise bounds of the states that represent a proportion, volume-fraction, or density. This is guaranteed, in the absence of control, by the maximum or comparison principle.

    We focus on the classical controllability problem, in which one aims to drive the system to a final target, for instance, a steady-state. In this context the state is required to preserve, in the presence of controls, the pointwise bounds of the uncontrolled dynamics.

    The presence of constraints introduces significant added complexity for the control process. They may force the needed control-time to be large enough or even make some natural targets to be unreachable, due to the presence of barriers that the controlled trajectories might not be able to overcome.

    We develop and present a general strategy to analyze these problems. We show how the combination of the various intrinsic qualitative properties of the systems' dynamics and, in particular, the use of traveling waves and steady-states' paths, can be employed to build controls driving the system to the desired target.

    We also show how, depending on the value of the Allee parameter and on the size of the domain in which the process evolves, some natural targets might become unreachable. This is consistent with empirical observations in the context of endangered minoritized languages and species at risk of extinction.

    Further recent extensions are presented, and open problems are settled. All the discussions are complemented with numerical simulations to illustrate the main methods and results.

    Mathematics Subject Classification: Primary: 93C20, 92B99, 93B05, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Left (resp. Right): A bistable (resp. monostable) nonlinearity

    Figure 2.  Profile $ U(x) $ for the traveling wave for the cubic nonlinearity $ f(u) = u(1-u)(u-\theta) $ restricted in the interval $ [-10,10] $. This profile $ U $ is independent of the value of $ \theta $

    Figure 3.  Original domain $ \Omega = (0,L) $, extended domain $ \Omega_E = (-1,L+1) $ and the control region $ \omega $

    Figure 4.  Left: Control function $ a(0,t) $ steering the semilinear equation with cubic bistable nonlinearity $ f(s) = s(1-s)(s-\theta) $ to the steady-state $ w\equiv\theta $ in time $ T = 5 $. Right: Snapshot at time $ t = 2.2688 $ of the controlled trajectory $ v_a(\cdot,t) $ violating the constraints $ 0\le v \le 1 $

    Figure 5.  Qualitative representation of the staircase strategy

    Figure 6.  A barrier function for the semilinear heat equation with cubic nonlinearity $ f(u) = u(1-u)(u-1/3) $ for $ L = 20 $

    Figure 7.  Separatrix of the system and phase portrait inside the region it determines, $ f(s) = s(1-s) $

    Figure 8.  Qualitative bifurcation diagram for the stationary solutions. The black curve represents a nontrivial solution. At the left, the diagram for convave monostable nonlinearities is plotted and, at the right, for a general monostable nonlinearity [67]

    Figure 9.  Function $ v_\delta $

    Figure 10.  Bounds on $ L^* $ and $ L^*_\theta $ for different values of $ \theta $ in the nonlinearity $ f(s) = s(1-s)(1-\theta) $. The red dots represent upper bounds and the blue dots lower bounds. Left: Bounds on $ L^* $. Right: bounds on $ L_\theta^* $ (Definition 5.3)

    Figure 11.  Phase portraits for $ f(s) = s(1-s)(s-\theta) $, when $ \theta<1/2 $ ($ F(1)>0 $). Left/The phase plane: in black lines the stable and unstable manifolds of the points $ (0,0) $ and $ (1,0) $, and, in blue lines, the trajectories of the ODE system. Right: The separatrix, stable and unstable manifolds of the points $ (0,0) $ and $ (1,0) $ depicted outside of the admisible region $ 0\leq u\leq 1 $ (in blue)

    Figure 12.  Phase portraits for $ f(s) = s(1-s)(s-1/2) $ ($ \theta = 1/2, \,F(1) = 0 $). Left/The phase plane: in black lines the stable and unstable manifolds of the points $ (0,0) $ and $ (1,0) $, and, in blue lines, the trajectories of the ODE system. Right: The separatrix, stable and unstable manifolds of the points $ (0,0) $ and $ (1,0) $ depicted outside of the admisible region $ 0\leq u\leq 1 $ (in blue)

    Figure 13.  Left: Qualitative bifurcation diagram for the stationary solutions of a bistable nonlinearity that is convex in $ (0,\theta) $ and concave in $ (\theta,1) $. Richt: bifurcation dyagram for a general non-convex nonlinearity in $ (0,\theta) $

    Figure 14.  Functional $ J^{e_1,e_3}_\lambda(\alpha,\beta,0) $ for different values of $ \lambda $

    Figure 15.  Graph of the functional $ J^{e_1,e_3}_\lambda(\alpha,\beta,\theta = 0.33) $ for different pairs $ (\alpha,\beta) $ and values of $ \lambda $

    Figure 16.  Energy functional $ J^{e_1,e_3}_\lambda(\alpha,\beta,\theta) $. The values of the functional above $ 3 $ are represented as $ 3 $ in the picture. The white crosses indicate the critical points of the functional

    Figure 17.  The blue and red lines corresponds to nontrivial solutions with Dirichlet conditions $ 0 $ and $ \theta $ respectively. In green, a section of the ground state solution defined in the whole space $ \mathbb{R} $

    Figure 18.  Invariant region $ \Gamma $ (in blue) for the nonlinearity $ f(s) = s(1-s)(s-1/3) $

    Figure 19.  $ L = 8>L_\theta $, $ \theta = 0.33 $. Left: A path of steady-states of system (34) connecting the steady-states $ (0,0) $ and $ (\theta,0) $. In black the steady-states of (49) that are part of a continuous path connecting to the constant stationary solution $ \theta $ are represented. The red crosses are the corresponding boundary controls. Right: The stationary path plotted in the space domain. In red the curve of maximum value in the invariant region $ \Gamma $, and in green the initial condition and in blue the constant steady-state $ \theta $

    Figure 20.  $ L = 1 $, $ \theta = 0.33 $. Representation of the "even strategy" in the phase portrait of system (34). Left: in black, the steady-states of (49) that constitute the connected path of stationary solutions, connecting to $ \theta $. In red, the values of the Dirichlet controls. Right: the stationary path in the space domain. The red curve represents the nontrivial elliptic solution in $ \mathbb{R} $, that corresponds to the homoclinic orbit in the phase plane. In green the initial steady-state from which the path of steady-states departs

    Figure 21.  $ L = 8 $, $ \theta = 0.33 $. Representation of the "even strategy" in the phase portrait of system (34). Left: in black, the representation of the steady-states of (49) connecting to $ \theta $. In red, the values of the Dirichlet controls. Right: the plot of the stationary states along the space domain. The red curve represents the nontrivial elliptic solution in $ \mathbb{R} $, i. e. the homoclinic orbit in the phase plane. In green the initial condition

    Figure 22.  $ L = 8 $, $ \theta = 0.33 $. Left: Trace $ a(s) $ of the connected path of the steady states in equation (50) as a function of the shooting parameter $ 0\le s \le 1 $. Middle: The minimum of the steady-states $ u_{a} $ depending on the boundary value $ a $ along the path. Note that for a given boundary value $ a $, there might be two solutions associated with $ a $ inside the path. Right: The maximum of the steady-states $ u_a $ depending on the boundary value $ a $ along the path.

    Figure 23.  $ L = 20 $, $ \theta = 0.33 $. The "even strategy" is represented in the phase portrait of system (34). Left: in black, the plot of the steady-states of (49), constituting a connected path leading to the stationary solution $ \theta $. In red, the values of the corresponding boundary controls. Right: the stationary path plotted in the space domain. The red curve is the nontrivial elliptic solution in $ \mathbb{R} $, corresponding to the homoclinic orbit in the phase plane. In green the steady-state $ v_\epsilon $ from which the path departs

    Figure 24.  $ L = 20 $, $ \theta = 0.33 $. Left: trace of the connected path of the steady states $ a(s) $ as a function of the shooting parameter $ 0\le s \le 1 $ in equation (50). Middle: The minimum of the steady-states $ u_a $ depending on the boundary value $ a $ along the path. Note that for a given boundary value $ a $, there might be two solutions associated with $ a $ inside the path. Right: The maximum of the steady-states $ u_a $ depending on the boundary value $ a $ along the path

    Figure 25.  $ f(s) = s(1-s)(s-\theta) $, $ \theta = 0.33 $, $ L = 12 $. Left: Connected path of steady-states from $ 0 $ to the minimal nontrivial solution $ \underline{u}_{L} $ in the phase plane. This path has elements outside the invariant region $ \Gamma $. Right: The connected path in the physical space

    Figure 26.  $ L = 20 $, $ \theta = 0.5 $. The even path of steady-states from an initial condition to the stationary solution $ \theta $ of system (34). Left: In black, the steady-states of (49), constituting a connected path of stationary solutions leading to $ \theta $. In red, the corresponding values of the controls. Right: the stationary path plotted in the space domain, the green curve being the initial steady-state

    Figure 27.  Graph associated with the path shown in Figure 26. Left: Connected path of steady-states, in the horizontal axis the parameter $ s\in [0,1] $ in the vertical axis the boundary value. Center: The minimum value of $ u_{a} $, as a function of the boundary value $ a $. Right: The maximum value of $ u_{a} $, as a function of the boundary value $ a $

    Figure 28.  $ L = 20 $, $ \theta = 0.5 $. Phase portrait representation of the path of even steady-states of system (34) connecting the initial condition with the constant steady-state $ 0 $. Left: In black, the path of steady-states of (49) connecting to the stationary solution $ 0 $. In red, the values of the corresponding controls. Right: the stationary path plotted in the space domain, the green curve being the initial steady-state

    Figure 29.  Graph associated with the path shown in Figure 28. Left: Boundary values of the connected path of steady-states as a function of the parameter $ s\in [0,1] $. Center: The minimum value of $ u_{a} $, with respect to $ a $, for the connected path of steady-states. Right: The maximum value of $ u_{a} $, with respect to $ a $

    Figure 30.  $ L = 20 $, $ \theta = 0.5 $. Phase portrait representation of the path of even steady-states of system (34) connecting the initial condition with the constant steady-state $ 1 $. Left: In black, the path of steady-states of (49) connecting to the stationary solution $ 1 $. In red, the values of the corresponding controls. Right: the stationary path plotted in the space domain, the green curve being the initial steady-state

    Figure 31.  Graph associated with the path shown in Figure 30. Left: Boundary values of the connected path of steady-states as a function of the parameter $ s\in [0,1] $. Center: The minimum value of $ u_{a} $, with respect to $ a $, for the connected path of steady-states. Right: The maximum value of $ u_{a} $, with respect to $ a $

    Figure 32.  Left: Connectivity map for $ F(1)>0 $. In red, an admissible continuous path of steady-states connecting $ 0 $ and $ \theta $, existing for all $ L>0 $. In green, an admissible and continuous path of steady-states connecting $ \theta $ and $ 1 $, whose existence is guaranteed for $ L<L^* $. In black, traveling waves for the Cauchy problem. The traveling wave from $ 0 $ to $ 1 $ is unique, while there are infinitely many traveling waves from $ \theta $ to $ 1 $ or to $ 0 $, since the nonlinearity, when restricted to $ [\theta,1] $ or in $ [0,\theta] $ is monostable and Theorem 3.9 applies. Right: Connectivity map for $ F(1) = 0 $. In red, admissible continuous paths of steady-states connecting $ 0 $ and $ \theta $ and $ \theta $ to $ 1 $, respectively, existing for any $ L>0 $. The traveling wave from $ 0 $ to $ 1 $ is unique and stationary, giving a continuous path of admissible steady-states connecting $ 0 $ and $ 1 $. In black, infinitely many non-stationary traveling waves connecting $ \theta $ to $ 1 $ and to $ 0 $, respectively

    Figure 33.  Non admissible continuous path from $ 0 $ to $ 1 $

    Figure 34.  $ f_d(s) = s\left(d+(12-3d)s+(3d-12)s^2\right) $ for different values of $ d $. The integral between $ (0,1) $ of the three functions is the same, i.e. $ \int_0^1f_d(s)ds = 1 $. The red dashed line indicates the slope at the origin

    Figure 35.  Experiment 1: Control towards $ \theta $. Controlled state for $ L = 8 $, $ T = 30 $ and initial datum $ u_0(x) = 1 $

    Figure 36.  Experiment 2: Control in the presence of a barrier. Controlled state for $ L = 20 $, $ T = 30 $ and initial datum $ u_0 \equiv 1 $

    Figure 37.  Experiment 2: Control in the presence of a barrier. Controlled state for $ L = 20 $, $ T = 60 $ and initial datum $ u_0\equiv 0 $

    Figure 38.  Experiment 3. Positivity of the minimal control time. Controlled state for $ L = 20 $, $ T = 15 $ and initial datum $ u_0 \equiv 0 $

    Figure 39.  Experiment 3. Positivity of the minimal control time. Controlled state in minimal time for $ L = 20 $ and initial datum $ u_0 \equiv 1 $

    Figure 40.  Experiment 4. Quasistatic control strategy. Controlled state for $ L = 20 $, $ T = 400 $ and initial datum $ u_0 \equiv 0 $

    Figure 41.  Experiment 4. Quasistatic control strategy. Left: Optimal constrained control associated with Figure 40. Right: Phase-plane plot of the steady-states (in black) and snapshots of the parabolic state (in red)

    Figure 42.  Numerical simulation of the semilinear heat equation with nonlinearity $ f(s) = s(1-s)(1-\theta) $ with boundary value $ a(x,t) = 0 $ leading to a barrier steady-state

    Figure 43.  Ball containing the original domain $ \Omega $

    Figure 44.  $ \theta = 1/3 $, $ R = 30 $ and $ d = 2 $. In blue the phase space description of the invariant region. In black the radial trajectories forming the continuous path of steady-states. The red stars indicate the values taken over the boundary

    Figure 45.  In blue the curve $ N(x) $, in orange the quotient $ -N_x(x)/N(x) $ responsible of the drift effect. Left $ N(x) = e^{-\frac{x^2}{\sigma}} $, right $ N(x) = e^{\frac{x^2}{\sigma}} $

    Figure 46.  Minimal controllability time from $ 0 $ to $ \theta = 1/3 $ as a function $ 1/\sigma $. Left: minimal controllability time for the Gaussian $ N(x) = e^{-\frac{x^2}{\sigma}} $. Right: $ N(x) = e^{\frac{x^2}{\sigma}} $

    Figure 47.  The blue dotted line represents the continuous path of steady-states for the homogeneous equation. In red, the perturbed steady-states, linked to the unperturbed steady-states (black) that belong to a continuous path for the homogeneous equation

    Figure 48.  Left: Upper barrier, solution of (62) for $ \sigma = 40 $. Right: Sketch of the phase-plane analysis for the trajectory leading to a solution of (62)

    Figure 49.  Space-time representation of the optimal control to $ w\equiv\theta $ with initial data $ w\equiv 0 $. The spatial domain is the unit interval. The nonlinearity is $ f(s) = s(s-\theta)(1-s) $ with $ \theta = 0.33 $ (therefore $ \int_0^1f(s)>0 $) and the controls have been limited to take values in $ [0,1] $. The optimal control problem consists on minimizing the $ L^2 $ distance of the final state to $ w\equiv\theta $. At the left, with diffusivity $ \mu(t) = 0.125\, \mathrm{exp}(-4t) $, we observe a lack of controllability from the initial state $ w\equiv 0 $ to the target $ w\equiv \theta $. At the right, with diffusivity $ \mu(t) = 0.125\, \mathrm{exp}(-2.5t) $, we observe controllability to the steaty-state $ w\equiv \theta $

  • [1] F. Ammar-KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, The Kalman condition for the boundary controllability of coupled parabolic systems. bounds on biorthogonal families to complex matrix exponentials, J. Math. Pures Appl., 96 (2011), 555-590.  doi: 10.1016/j.matpur.2011.06.005.
    [2] H. Antil, U. Biccari, R. Ponce, M. Warma and S. Zamorano, Controllability properties from the exterior under positivity constraints for a 1-d fractional heat equation, arXiv preprint, arXiv: 1910.14529.
    [3] A. Audrito, Bistable reaction equations with doubly nonlinear diffusion, Discrete Contin. Dyn. Syst., 39 (2019), 2977-3015.  doi: 10.3934/dcds.2019124.
    [4] A. Audrito and J. Vázquez, The fisher-kpp problem with doubly nonlinear diffusion, J. Differential Equations, 263 (2017), 7647-7708.  doi: 10.1016/j.jde.2017.08.025.
    [5] N. H. Barton, The effects of linkage and density-dependent regulation on gene flow, Heredity, 57 (1986), 415-426.  doi: 10.1038/hdy.1986.142.
    [6] N. Barton and M. Turelli, Spatial waves of advance with bistable dynamics: Cytoplasmic and genetic analogues of allee effects, Am. Nat., 178 (2011), E48–E75. doi: 10.1086/661246.
    [7] N. Bellomo, Modeling Complex Living Systems: A Kinetic Theory and Stochastic Game Approach, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2008.
    [8] H. BerestyckiF. Hamel and L. Roques, Analysis of the periodically fragmented environment model. I. Species persistence, J. Math. Biol., 51 (2005), 75-113.  doi: 10.1007/s00285-004-0313-3.
    [9] H. Berestycky, Le nombre de solutions de certains problèmes semi-linéaires elliptiques, J. Funct. Anal., 40 (1981), 1-29.  doi: 10.1016/0022-1236(81)90069-0.
    [10] H. Berestycky and P.-L. Lions, Some applications of the method of super and subsolutions, Bifurcation and Nonlinear Eigenvalue Problems, Lecture Notes in Math., Springer, Berlin, 782 (1980), 16-41. 
    [11] K. BerthierS. PiryJ. CossonP. GiraudouxJ. FoltêteR. DefautD. Truchetet and X. Lambin, Dispersal, landscape and travelling waves in cyclic vole populations, Ecol. Lett., 17 (2014), 53-64.  doi: 10.1111/ele.12207.
    [12] U. BiccariM. Warma and E. Zuazua, Controllability of the one-dimensional fractional heat equation under positivity constraints, Commun. Pure Appl. Anal., 19 (2020), 1949-1978.  doi: 10.3934/cpaa.2020086.
    [13] P.-A. Bliman and N. Vauchelet, Establishing traveling wave in bistable reaction-diffusion system by feedback, IEEE Control Syst. Lett., 1 (2017), 62-67.  doi: 10.1109/LCSYS.2017.2703303.
    [14] R. BuchholzH. EngelE. Kammann and F. Tröltzsch, On the optimal control of the Schlögl-model, Comput. Optim. Appl., 56 (2013), 153-185.  doi: 10.1007/s10589-013-9550-y.
    [15] P. Cannarsa and A. Khapalov, Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1293-1311.  doi: 10.3934/dcdsb.2010.14.1293.
    [16] R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in disrupted environments, Proc. Roy. Soc. Edinburgh Sect. A, 112 (1989), 293-318.  doi: 10.1017/S030821050001876X.
    [17] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.
    [18] J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136. American Mathematical Society, Providence, RI, 2007. doi: 10.1090/surv/136.
    [19] J.-M. Coron, J. Díaz, A. Drici and T. Mingazzini, Global null controllability of the 1-dimensional nonlinear slow diffusion equation, Partial Differential Equations: Theory, Control and Approximation, Springer, Dordrecht, (2014), 211–224. doi: 10.1007/978-3-642-41401-5_8.
    [20] J. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations, SIAM J. Control. Optim., 43 (2004), 549-569.  doi: 10.1137/S036301290342471X.
    [21] E. J. CrampinE. A. Gaffney and P. K. Maini, Reaction and diffusion on growing domains: Scenarios for robust pattern formation, Bulletin of Mathematical Biology, 61 (1999), 1093-1120.  doi: 10.1006/bulm.1999.0131.
    [22] R. Cressman and Y. Tao, The replicator equation and other game dynamics, Proc. Natl. Acad. Sci. USA, 111 (2014), 10810-10817.  doi: 10.1073/pnas.1400823111.
    [23] A. De MasiP. Ferrari and J. Lebowitz, Reaction diffusion equations for interacting particle systems, J. Stat. Phys., 44 (1986), 589-644.  doi: 10.1007/BF01011311.
    [24] W. DingH. FinottiS. LenhartY. Lou and Q. Ye, Optimal control of growth coefficient on a steady-state population model, Nonlinear Anal. Real World Appl., 11 (2010), 688-704.  doi: 10.1016/j.nonrwa.2009.01.015.
    [25] M. Duprez and P. Lissy, Bilinear local controllability to the trajectories of the fokker-planck equation with a localized control, Annales de l'Institut Fourier, (2021).
    [26] R. Durrett, Ten lectures on particle systems, Lectures on Probability Theory, Lecture Notes in Math., Springer, Berlin, 1608 (1995), 97-201.  doi: 10.1007/BFb0095747.
    [27] O. Y. Emanuilov, Controllability of parabolic equations, Sb. Math., 186 (1995), 879-900.  doi: 10.1070/SM1995v186n06ABEH000047.
    [28] J. W. Evans, Nerve axon equations. Ⅳ. The stable and unstable impulse, Indiana Univ. Math. J., 24 (1974/75), 1169-1190.  doi: 10.1512/iumj.1975.24.24096.
    [29] L. C. Evans, Partial Differential Equations, Second edition, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.
    [30] C. FabreJ.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 31-61.  doi: 10.1017/S0308210500030742.
    [31] H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., 43 (1971), 272-292.  doi: 10.1007/BF00250466.
    [32] H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 32 (1974/75), 45-69.  doi: 10.1090/qam/510972.
    [33] E. Fernández-CaraM. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal., 259 (2010), 1720-1758.  doi: 10.1016/j.jfa.2010.06.003.
    [34] E. Fernández-Cara and S. Guerrero, Global carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., 45 (2006), 1395-1446.  doi: 10.1137/S0363012904439696.
    [35] E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514. 
    [36] E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 583-616.  doi: 10.1016/s0294-1449(00)00117-7.
    [37] P. C. Fife, Asymptotic states for equations of reaction and diffusion, Bull. Amer. Math. Soc., 84 (1978), 693-726.  doi: 10.1090/S0002-9904-1978-14502-9.
    [38] P. C. Fife, Mathematical Aspects Of Reacting And Diffusing Systems, Lecture Notes in Biomathematics, 28. Springer-Verlag, Berlin-New York, 1979.
    [39] P. C. Fife and M. Tang, Comparison principles for reaction-diffusion systems: Irregular comparison functions and applications to questions of stability and speed of propagation of disturbances, J. Differ. Equations, 40 (1981), 168-185.  doi: 10.1016/0022-0396(81)90016-4.
    [40] R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 7 (1937), 355-369.  doi: 10.1111/j.1469-1809.1937.tb02153.x.
    [41] A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.
    [42] T. Gallay and R. Joly, Global stability of travelling fronts for a damped wave equation with bistable nonlinearity, Ann. Sci.Éc. Norm. Supér, 42 (2009), 103–140. doi: 10.24033/asens.2091.
    [43] B. Geshkovski, Null-controllability of perturbed porous medium gas flow, ESAIM Control Optim. Calc. Var., 26 (2020), Paper No. 85, 30 pp. doi: 10.1051/cocv/2020009.
    [44] B. Geshkovsky, Control in Moving Interfaces and Deep Learning, PhD Thesis, Universidad Autónoma de Madrid, 2021.
    [45] R. J. Glauber, Time-dependent statistics of the ising model, J. Mathematical Phys., 4 (1963), 294-307.  doi: 10.1063/1.1703954.
    [46] M. González-Burgos and L. de Teresa, Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113.  doi: 10.4171/PM/1859.
    [47] C. Gui and M. Zhao, Traveling wave solutions of Allen–Cahn equation with a fractional Laplacian, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 785-812.  doi: 10.1016/j.anihpc.2014.03.005.
    [48] A. Haraux and P. Poláčik, Convergence to a positive equilibrium for some nonlinear evolution equations in a ball, Acta Math. Univ. Comeniane, 61 (1992), 129-141. 
    [49] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.
    [50] A. Henrot, I. Mazari and Y. Privat, Shape optimization of a dirichlet type energy for semilinear elliptic partial differential equations, ESAIM Control Optim. Calc. Var., 27 (2021), suppl., Paper No. S6, 32 pp. doi: 10.1051/cocv/2020052.
    [51] V. Hernandez-SantamariaL. de Teresa and A. Poznyak, Hierarchic control for a coupled parabolic system, Port. Math., 73 (2016), 115-137.  doi: 10.4171/PM/1979.
    [52] V. Hernández-Santamaría and K. Le Balc'h, Local null-controllability of a nonlocal semilinear heat equation, Appl. Math. Optim., 84 (2021), 1435-1483.  doi: 10.1007/s00245-020-09683-2.
    [53] J. HofbauerV. Hutson and G. T. Vickers, Travelling waves for games in economics and biology, Nonlinear Anal., 30 (1997), 1235-1244.  doi: 10.1016/S0362-546X(96)00336-7.
    [54] J. Hofbauer and K. Sigmund, Evolutionary game dynamics, Bll. Amer. Math. Soc., 40 (2003), 479-519.  doi: 10.1090/S0273-0979-03-00988-1.
    [55] V. HutsonK. Mischaikow and G. T. Vickers, Multiple travelling waves in evolutionary game dynamics, Jpn. J. Ind. Appl. Math., 17 (2000), 341-356.  doi: 10.1007/BF03167371.
    [56] N. Iriberri and J.-R. Uriarte, Minority language and the stability of bilingual equilibria, Rationality and Society, 24 (2012), 442-462.  doi: 10.1177/1043463112453556.
    [57] M. A. Jendoubi, A simple unified approach to some convergence theorems of L. Simon, J. Funct Anal., 153 (1998), 187-202.  doi: 10.1006/jfan.1997.3174.
    [58] A. Y. Khapalov, Global non-negative controllability of the semilinear parabolic equation governed by bilinear control, ESAIM Control Optim. Calc. Var., 7 (2002), 269-283.  doi: 10.1051/cocv:2002011.
    [59] A. Y. Khapalov, On bilinear controllability of the parabolic equation with the reaction-diffusion term satisfying Newton's law, J. Comput. Appl. Math, 21 (2002), 275-297. 
    [60] A. Kolmogorov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Moskow, Ser. Internat., Sec. A, 1 (1937), 1-25. 
    [61] K. Le Balc'h, Global null-controllability and nonnegative-controllability of slightly superlinear heat equations, J. Math. Pures Appl., 135 (2020), 103-139.  doi: 10.1016/j.matpur.2019.10.009.
    [62] K. Le Balc'h, Local controllability of reaction-diffusion systems around nonnegative stationary states, ESAIM Control Optim. Calc. Var., 26 (2020), Paper No. 55, 32 pp. doi: 10.1051/cocv/2019033.
    [63] H. Le Dret, Nonlinear Elliptic Partial Differential Equations: An Introduction, Universitext, Springer International Publishing, 2018. doi: 10.1007/978-3-319-78390-1.
    [64] G. Lebeau and L. Robbiano, Contrôle exact de l équation de la chaleur, Commun. Part. Diff. Eq., 20 (1995), 335-356.  doi: 10.1080/03605309508821097.
    [65] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Die Grundlehren der Mathematischen Wissenschaften, Band 170 Springer-Verlag, New York-Berlin, 1971.
    [66] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. Ⅱ, Springer-Verlag, 1972.
    [67] P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24 (1982), 441-467.  doi: 10.1137/1024101.
    [68] P.-L. Lions, Structure of the set of steady-state solutions and asymptotic behaviour of semilinear heat equations, J. Differential Equations, 53 (1984), 362-386.  doi: 10.1016/0022-0396(84)90031-7.
    [69] P. Lissy and C. Moreau, State-constrained controllability of linear reaction-diffusion systems, ESAIM Control Optim. Calc. Var., 27 (2021), Paper No. 70, 21 pp. doi: 10.1051/cocv/2021057.
    [70] Y. LiuT. Takahashi and M. Tucsnak, Single input controllability of a simplified fluid-structure interaction model, ESAIM Control Optim. Calc. Var., 19 (2013), 20-42.  doi: 10.1051/cocv/2011196.
    [71] J. LoheacE. Trelat and E. Zuazua, Minimal controllability time for the heat equation under unilateral state or control constraints, Math. Models Methods Appl. Sci., 27 (2017), 1587-1644.  doi: 10.1142/S0218202517500270.
    [72] J. Lohéac, Nonnegative boundary control of 1d linear heat equations, Vietnam Journal of Mathematics, 1–26.
    [73] J. LohéacE. Trélat and E. Zuazua, Nonnegative control of finite-dimensional linear systems, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 38 (2021), 301-346.  doi: 10.1016/j.anihpc.2020.07.004.
    [74] Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, Tutorials in Mathematical Biosciences. Ⅳ, Lecture Notes in Math., Math. Biosci. Subser., Springer, Berlin, 1922 (2008), 171-205.  doi: 10.1007/978-3-540-74331-6_5.
    [75] Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.
    [76] D. MaityM. Tucsnak and E. Zuazua, Controllability and positivity constraints in population dynamics with age structuring and diffusion, J. Math. Pures Appl., 129 (2019), 153-179.  doi: 10.1016/j.matpur.2018.12.006.
    [77] H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454.  doi: 10.2977/prims/1195188180.
    [78] H. Matano, Convergence of solutions of one-dimensional semilinear parabolic equations, J. Math. Kyoto. U., 18 (1978), 221-227.  doi: 10.1215/kjm/1250522572.
    [79] I. Mazari, G. Nadin and Y. Privat, Optimal control of resources for species survival, PAMM, 18 (2018), e201800086. doi: 10.1002/pamm.201800086.
    [80] I. MazariG. Nadin and Y. Privat, Optimal location of resources maximizing the total population size in logistic models, J. Math. Pures Appl., 134 (2020), 1-35.  doi: 10.1016/j.matpur.2019.10.008.
    [81] I. Mazari, G. Nadin and Y. Privat, Some challenging optimisation problems for logistic diffusive equations and numerical issues.
    [82] I. Mazari and D. Ruiz-Balet, A fragmentation phenomenon for a nonenergetic optimal control problem: Optimization of the total population size in logistic diffusive models, SIAM J. Appl. Math., 81 (2021), 153-172.  doi: 10.1137/20M132818X.
    [83] I. Mazari and D. Ruiz-Balet, Quantitative stability for eigenvalues of Schrödinger operator, quantitative bathtub principle, and application to the turnpike property for a bilinear optimal control problem, SIAM J. Math. Anal., 54 (2022), 3848–3883, arXiv: 2010.10798. doi: 10.1137/21M1393121.
    [84] I. Mazari, D. Ruiz-Balet and E. Zuazua, Constrained control of gene-flow models.
    [85] J. D. Murray, Mathematical Biology I. An Introduction, Third edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002.
    [86] K. Nagahara, Y. Lou and E. Yanagida, Maximizing the total population with logistic growth in a patchy environment, J. Math. Biol., 82 (2021), Paper No. 2, 50 pp. doi: 10.1007/s00285-021-01565-7.
    [87] W. I. Newman, The long-time behavior of the solution to a non-linear diffusion problem in population genetics and combustion, J. Theoret. Biol., 104 (1983), 473-484.  doi: 10.1016/0022-5193(83)90240-0.
    [88] A. Okubo and S. A. Levin, Diffusion and Ecological Problems. Modern Perspectives, Second edition, Interdisciplinary Applied Mathematics, 14. Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-4978-6.
    [89] K. OnimaruL. MarconM. MusyM. Tanaka and J. Sharpe, The fin-to-limb transition as the re-organization of a turing pattern, Nat. Commun., 7 (2016), 11582.  doi: 10.1038/ncomms11582.
    [90] R. Pastor-SatorrasC. CastellanoP. Van Mieghem and A. Vespignani, Epidemic processes in complex networks, Rev. Modern Phys., 87 (2015), 925-979.  doi: 10.1103/RevModPhys.87.925.
    [91] M. Patriarca, X. Castelló, J. R. Uriarte, V. M. Eguíluz and M. San Miguel, Modeling two-language competition dynamics, Adv. Complex. Syst., 15 (2012), 1250048, 24 pp. doi: 10.1142/S0219525912500488.
    [92] B. Perthame, Parabolic Equations in Biology. Growth, Reaction, Movement and Diffusion, Lecture Notes on Mathematical Modelling in the Life Sciences, Springer, 2015. doi: 10.1007/978-3-319-19500-1.
    [93] D. Pighin and E. Zuazua, Controllability under positivity constraints of semilinear heat equations, Math. Control Relat. Fields, 8 (2018), 935-964.  doi: 10.3934/mcrf.2018041.
    [94] D. Pighin and E. Zuazua, Controllability under positivity constraints of multi-d wave equations, Trends in Control Theory and Partial Differential Equations, Springer INdAM Ser., Springer, Cham, 232 (2019), 195-232. 
    [95] P. Poláčik and K. P. Rybakowski, Nonconvergent bounded trajectories in semilinear heat equations, J. Differ. Equations, 124 (1996), 472-494.  doi: 10.1006/jdeq.1996.0020.
    [96] P. Poláčik and F. Simondon, Nonconvergent bounded solutions of semilinear heat equations on arbitrary domains, J. Differ. Equations, 186 (2002), 586-610.  doi: 10.1016/S0022-0396(02)00014-1.
    [97] C. Pouchol, On the stability of the state 1 in the non-local Fisher-KPP equation in bounded domains, C. R. Math. Acad. Sci. Paris, 356 (2018), 644-647.  doi: 10.1016/j.crma.2018.04.016.
    [98] C. PoucholE. Trélat and E. Zuazua, Phase portrait control for 1d monostable and bistable reaction–diffusion equations, Nonlinearity, 32 (2019), 884-909.  doi: 10.1088/1361-6544/aaf07e.
    [99] Y. PrivatE. Trélat and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1097-1126.  doi: 10.1016/j.anihpc.2012.11.005.
    [100] Y. PrivatE. Trélat and E. Zuazua, Optimal shape and location of sensors for parabolic equations with random initial data, Arch. Ration. Mech. Anal., 216 (2015), 921-981.  doi: 10.1007/s00205-014-0823-0.
    [101] Y. PrivatE. Trélat and E. Zuazua, Actuator design for parabolic distributed parameter systems with the moment method, SIAM J. Control Optim., 55 (2017), 1128-1152.  doi: 10.1137/16M1058418.
    [102] K. Prochazka and G. Vogl, Quantifying the driving factors for language shift in a bilingual region, P. Natl. Acad. Sci. USA, 114 (2017), 4365-4369.  doi: 10.1073/pnas.1617252114.
    [103] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967.
    [104] J. QingZ. YangK. HeZ. ZhangX. GuX. YangW. ZhangB. YangD. Qi and Q. Dai, The minimum area requirements (MAR) for giant panda: An empirical study, Sci. Rep.-UK, 6 (2016), 37715.  doi: 10.1038/srep37715.
    [105] F. Rothe, Convergence to travelling fronts in semilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 80 (1978), 213-234.  doi: 10.1017/S0308210500010258.
    [106] D. Ruiz-Balet and E. Zuazua, Control under constraints for multi-dimensional reaction-diffusion monostable and bistable equations, J. Math. Pures Appl., 143 (2020), 345-375.  doi: 10.1016/j.matpur.2020.08.006.
    [107] C. Ryll, J. Löber, S. Martens, H. Engel and F. Tröltzsch, Analytical, optimal, and sparse optimal control of traveling wave solutions to reaction-diffusion systems, Control of Self-Organizing Nonlinear Systems, Underst. Complex Syst., Springer, (2016), 189–210.
    [108] K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations, Trans. Amer. Math. Soc., 302 (1987), 587-615.  doi: 10.2307/2000859.
    [109] F. Schlögl, Chemical reaction models for non-equilibrium phase transitions, Zeitschrift für Physik, 253 (1972), 147–161.
    [110] T. I. Seidman, Observation and prediction for the heat equation. Ⅲ, J. Differ. Equations, 20 (1976), 18–27, http://www.sciencedirect.com/science/article/pii/0022039676900929. doi: 10.1016/0022-0396(76)90092-9.
    [111] L. Simon, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Ann. of Math., 118 (1983), 525-571.  doi: 10.2307/2006981.
    [112] P. A. StephensW. J. Sutherland and R. P. Freckleton, What is the allee effect?, Oikos, 87 (1999), 185-190.  doi: 10.2307/3547011.
    [113] G. Szabó and G. Fáth, Evolutionary games on graphs, Physics Reports, 446 (2007), 97-216.  doi: 10.1016/j.physrep.2007.04.004.
    [114] E. TrélatJ. Zhu and E. Zuazua, Allee optimal control of a system in ecology, Math. Models Methods Appl. Sci., 28 (2018), 1665-1697.  doi: 10.1142/S021820251840002X.
    [115] F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods, and Applications, Graduate Studies in Mathematics, 112. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/112.
    [116] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.
    [117] A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.
    [118] J. R. Uriarte and S. Sperlich, A behavioural model of minority language shift: Theory and empirical evidence, PloS one, 16 (2021), e0252453. doi: 10.1371/journal.pone.0252453.
    [119] J. VázquezThe Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. 
    [120] P. Verhulst, La loi d'accroissement de la population, Nouv. Mem. Acad. Roy. Soc. Belle-lettr. Bruxelles, 18.
    [121] A. Wächter and L. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), 25-57.  doi: 10.1007/s10107-004-0559-y.
    [122] T. I. Zelenyak, On the question of stability of mixed problems for a quasi-linear equation, Differentsial'nye Uravneniya, 3 (1967), 19-29. 
    [123] E. Zuazua, Contrôlabilité exacte de systèmes d'évolution non linéaires, CR Acad. Sci. Paris, 306 (1988), 129-132. 
    [124] E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 10 (1993), 109-129.  doi: 10.1016/s0294-1449(16)30221-9.
    [125] E. Zuazua, Controllability of the linear system of thermoelasticity, J. Math. Pures Appl., 74 (1995), 291-315. 
    [126] E. Zuazua, Controllability of partial differential equations, Lecture Notes, (2016), https://cel.archives-ouvertes.fr/cel-00392196.
  • 加载中

Figures(49)

SHARE

Article Metrics

HTML views(3087) PDF downloads(226) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return