[1]
|
A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Studies in Advanced Mathematics, 181. Cambridge University Press, Cambridge, 2020.
|
[2]
|
A. Agrachev, Y. Baryshnikov and A. Sarychev, Ensemble controllability by Lie algebraic methods, ESAIM Control Optim. Calc. Var., 22 (2016), 921-938.
doi: 10.1051/cocv/2016029.
|
[3]
|
A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87. Control Theory and Optimization, Ⅱ. Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-662-06404-7.
|
[4]
|
A. Agrachev and A. Sarychev, Control in the spaces of ensembles of points, SIAM J. Control Optim., 58 (2020), 1579-1596.
doi: 10.1137/19M1273049.
|
[5]
|
A. A. Agrachev and A. V. Sarychev, Control on the manifolds of mappings with a view to the deep learning, J. Dyn. Control Syst., (2021).
|
[6]
|
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.
|
[7]
|
Y. Bengio, P. Simard and P. Frasconi, Learning long-term dependencies with gradient descent is difficult, IEEE Trans. Neural Netw., 5 (1994), 157-166.
|
[8]
|
M. Benning, E. Celledoni, M. J. Erhardt, B. Owren and C. B. Schönlieb, Deep learning as optimal control problems: Models and numerical methods, J. Comput. Dyn., 6 (2019), 171-198.
doi: 10.3934/jcd.2019009.
|
[9]
|
M. Bongini, M. Fornasier, F. Rossi and F. Solombrino, Mean-field pontryagin maximum principle, J. Optim. Theory Appl., 175 (2017), 1-38.
doi: 10.1007/s10957-017-1149-5.
|
[10]
|
B. Bonnet, C. Cipriani, M. Fornasier and H. Huang, A measure theoretical approach to the Mean-field Maximum Principle for training NeurODEs, preprint, 2021, arXiv: 2107.08707.
|
[11]
|
F. L. Chernousko and A. A. Lyubushin, Method of successive approximations for solution of optimal control problems, Optim. Control Appl. Methods, 3 (1982), 101-114.
doi: 10.1002/oca.4660030201.
|
[12]
|
E. Çinlar, Probability and Stochastics, Graduate Texts in Mathematics, 261. Springer, New York, 2011.
doi: 10.1007/978-0-387-87859-1.
|
[13]
|
G. Dal Maso, An Introduction to $\Gamma$-Convergence, Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston, Inc., Boston, MA, 1993.
doi: 10.1007/978-1-4612-0327-8.
|
[14]
|
W. E, A proposal on machine learning via dynamical systems, Commun. Math. Stat., 5 (2017), 1-11.
doi: 10.1007/s40304-017-0103-z.
|
[15]
|
I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, Cambridge MA, 2016.
|
[16]
|
E. Haber and L. Ruthotto, Stable architectures for deep neural networks, Inverse Problems, 34 (2018), 014004, 22 pp.
doi: 10.1088/1361-6420/aa9a90.
|
[17]
|
K. He and J. Sun, Convolutional neural networks at constrained time cost, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2015), 5353-5360.
|
[18]
|
K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 770-778.
|
[19]
|
Q. Li, L. Chen, C. Tai and W. E, Maximum principle based algorithms for deep learning, J. Mach. Learn. Res., 18 (2017), Paper No. 165, 29 pp.
|
[20]
|
M. Marchi, B. Gharesifard and P. Tabuada, Training deep residual networks for uniform approximation guarantees, PMLR, 144 (2021), 677-688.
|
[21]
|
A. V. Pukhlikov, Optimal control of distributions, Comput. Math. Model., 15 (2004), 223-256.
doi: 10.1023/B:COMI.0000035820.49408.56.
|
[22]
|
Y. Sakawa and Y. Shindo, On global convergence of an algorithm for optimal control, IEEE Trans. Automat. Contr., 25 (1980), 1149-1153.
doi: 10.1109/TAC.1980.1102517.
|
[23]
|
A. Scagliotti, A gradient flow equation for optimal control problems with end-point cost, J. Dyn. Control Syst., (2022).
|
[24]
|
P. Tabuada, B. Gharesifard, Universal approximation power of deep neural networks via nonlinear control theory, preprint, 2020, arXiv: 2007.06007.
|
[25]
|
M. Thorpe and Y. van Gennip, Deep limits of residual neural networks, preprint, 2018, arXiv: 1810.11741.
|